No CrossRef data available.
Published online by Cambridge University Press: 23 May 2011
In situ photodeposition techniques taking advantage of the TiO2 photocatalysis have been developed for coupling metal sulfide quantum dots (QDs) and TiO2 at a nonoscale. The coupled metal sulfide-TiO2 systems possess the following characteristics: (I) a large amount of metal sulfides can be directly formed on TiO2 during a fairly short period with excellent reproducibility, (II) the band energies of metal sulfides QDs are widely tunable by irradiation time, (III) metal sulfide QDs can be deposited on not only the external surfaces but also the inner ones of mesoporous TiO2 nanocrystalline films without pore-blocking, (IV) the simple solution-based technique at low temperature enables the low-cost production, (V) this technique has a wide possibility for coupling TiO2 and narrow gap metal sulfides. These unique features produce the excellent performances of the resulting heteronanojunaction systems as the photoanodes for QD-sensitized solar cells.