Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:29:49.202Z Has data issue: false hasContentIssue false

Photodegradataion and Stability of a-Si Prepared at High Deposition Rates

Published online by Cambridge University Press:  21 February 2011

Stan Vepřek
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching-Munich, Germany
Oliver Ambacher
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching-Munich, Germany
Milan Vaněček
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching-Munich, Germany
Get access

Abstract

A-Si films with a constant optical band gap were prepared by plasma CVD from silane at deposition rates up to 17 Å/s under controllably varied conditons and characterized by a number of techniques. Photodegradation under AM1 simulator has been done for 50 hours and for 4–17 hours under 2 Watt/cm2 dye laser illumination at a wavelength corresponding to an absorption coefficient of about 104 cm-1 up to saturation. Samples with different initial value of σ(d) and σ(ph) show different rates of photodegra-dation, but they reach very similar saturation values. The fast photode-gradation with the dye laser is equivalent to a long term (several thousand hours) photodegradation under AM1. The AMI photodegradation for 50 to 100 hours does not yield any reliable measure of the stability of the films. The best films, which were prepared at a high deposition temperature show a low saturation defect density of about 5·1016 cm-3 (CPM-data).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31 (1977) 292; J. Appl. Phys. 51 (1980) 3262Google Scholar
[2] Proc. of the 14th Int. Conf. on Amorphous Semiconductors, Garmisch-Partenkirchen 1991, eds. Bauer, G. H., Fuhs, W. and Ley, L., J. Non-Cryst. Solids 137&138U991)Google Scholar
[3] Mahan, A. H. and Vanecek, M., AIP Conf. Proc. 243 (1991) 195;Google Scholar
Vanecek, M., Nelson, B. P., Mahan, A. H. and Crandall, R. S., J. Non-Cryst. Solids 137/38 (1991) 191 CrossRefGoogle Scholar
[4] Mahan, A. H., Nelson, B. P., Salomon, S. and Crandall, R. S., J. Non-Cryst. Solids 137/138 (1991) 657 CrossRefGoogle Scholar
[5] Shimizu, J., Kidoh, H., Morimoto, A. and Kumeda, M., Jap. J. Appl. Phys. 28 (1989) 586;CrossRefGoogle Scholar
Shisai, H., Ariyoshi, T., Hanna, J. and Shimizu, J., J. Non-Cryst. Solids 137&138 (1991) 693 & Appl. Phys. Lett. 59 (1991) 1096;Google Scholar
Shizai, H., Hanna, J. and Shimizu, J., Jap. J. Appl. Phys. 30 (1991) L881 Google Scholar
[6] Matsuda, A., Maskima, S., Hasczaki, K., Suzuki, A., Yamasaki, S. and McElheny, R. J., Appl. Phys. Lett. 58 (1991) 2494 Google Scholar
[7] McElheny, P. J. and Matsuda, A., Jap. J. Appl. Phys. 30 (1991) 1345;CrossRefGoogle Scholar
McElheny, P. J., Okushi, H., Yamazaki, S. and Matsuda, A., J. Non-Cryst. Solids 137&138 (1991) 243 CrossRefGoogle Scholar
[8] Jones, D. I., Gibson, R. A., LeComber, P., and Spear, W. E., Solar Energy Mater. 2 (1979) 93;Google Scholar
LeComber, P. G., J. Non-Cryst. Solids 90 (1987) 219;CrossRefGoogle Scholar
LeComber, P. G., AIP Conference Proceedings 234 (1991) 323;CrossRefGoogle Scholar
[9] Mahan, A. H., Chen, Y., Williamson, D. L. and Mooney, G. D., J. Non-Cryst. Solids 137&138 (1991) 65 Google Scholar
[10] Veprek, S. and Heintze, M., Plasma Chem. Plasma Process. 10 (1990) 3 Google Scholar
[11] Veprek, S. and Veprek-Heijman, M. G. J., Appl. Phys. Lett. 56 (1990) 1766; Plasma Chem. Plasma Process. 11 (1991) 323Google Scholar
[12] Veprek, S., Ambacher, O. and Rückschloβ, M., Mat. Res. Soc. Symp. Proc. 219 (1991) 667 Google Scholar
[13] Veprek, S. and Veprek-Heijman, M. G. J., Plasma Chem. Plasma Process. 11 (1991) 323 Google Scholar
[14] Veprek, S., Heintze, M., Sarott, F. -A., Jurcik-Rajman, M. and Willmott, P., Mater. Res. Soc. Proc. 118 (1988) 3 CrossRefGoogle Scholar
[15] Wyrsch, N., Finger, F.; McMahon, T. J. and Vanecek, M., J. Non-Cryst. Solids 137&138 (1991) 347 Google Scholar
[16] Vanecek, M., Holoubek, J., Shah, A., Brechet, M. and Mettler, A., Proc. 10th Photovolt. Solar En. Conf., Lisbon 1991, p. 196 Google Scholar