No CrossRef data available.
Article contents
Photodefinable Metal Oxide Dielectrics II: Direct Fabrication of Patterned High-k Dielectrics for Low Cost RF Capacitive MEMS Switches
Published online by Cambridge University Press: 01 February 2011
Abstract
In this paper, recent advancements related to a novel approach for fabricating low cost capacitive radio frequency microelectromechanical (RF MEMS) switches using directly photodefinable high dielectric constant metal oxides are discussed. In this approach, a radiation sensitive metal-organic precursor is deposited via spin coating and converted patternwise to a metal oxide using exposure to ultraviolet light. The feasibility of this approach has previously been demonstrated by fabricating bridge-type and cantilever-type RF MEMS switches. These early experiments showed that the photopatterned oxides displayed dielectric breakdown strengths that were insufficient for reliable operation of MEMS switches which required actuation voltages on the order of 20 V to 30 V. Recent work has focused on developing advanced processes based on the photodefinable metal-organic approach that can produce oxides with higher dielectric breakdown strengths and higher dielectric constants. A variety of post-patterning processes, including thermal baking and oxygen plasma annealing, were investigated and the impact of such processing on the resulting dielectric properties are discussed in this paper. It is shown that a combination of thermal annealing and oxygen plasma treatment can substantially improve the dielectric breakdown strength of the metal oxides produced using the photosensitive metal-organic process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005