Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T01:40:27.380Z Has data issue: false hasContentIssue false

PHOTOCONDUCTIVITY, PHOTOREFLECTANCE AND PHOTOLUMINESCENCE OF GaAs-AlAs MULTIPLE QUANTUM WELLS

Published online by Cambridge University Press:  28 February 2011

H. NEFF
Affiliation:
Departments of Chemistry
K. J. BACHMANN
Affiliation:
Departments of Chemistry Materials Engineering
W. D. LAIDIG
Affiliation:
Electrical and Computer Engineering North Carolina State University Raleigh, North Carolina 27695–8204
Get access

Abstract

Employing temperature dependent photoconductivity, photoluminescence and photoreflectivity measurements, we have analyzed a GaAs-AlAs multiple quantum well. The above optical techniques clearly resolve the fundamental inter-subband transitions, including heavy hole-light hole splittings. At T < 60K an anomalously high photoconductivity was discovered below the direct inter-subband transitions and is attributed tentatively to the presence of extrinsic interface states within the bandgap. For T > l00K the fundamental indirect transition was discovered and associated with LO (L) - phonon absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See for example, Richard Bube, H., Photoconductivity of Solids, Robert E. Krieger Publishing Company, Huntington, New York, 1978.Google Scholar
2. Schetzina, J. F., Phys. Rev. Bll, 4994 (1975).CrossRefGoogle Scholar
3. Capasso, F., Mohammed, K., Cho, A. Y., Hull, R. and Hutchinson, A. L., Phys. Rev. Lett. 55, 1152 (1985).Google Scholar
4.0. Glembocki, J., Shanabrook, B. V., Bottka, N., Beard, W. T. and Comas, J., Appl. Phys. Lett. 46, 970 (1985).Google Scholar
5. Shay, J. L., Phys. Rev. B2, 803 (1970).CrossRefGoogle Scholar
6. Vojak, B. A., Laidig, W. D., Holonyak, H., Jr., Camras, M., Coleman, J. J. and Dapkus, P. D., J. Appl. Phys. 52, 521 (1982). With 85% CB and 15% VB-offset we find the n=l:hh -> e-transition (line D) at 1.490 eV and the h=l:lh -> e transition (line E) at 1.516 eV. with 60% CB and 40% VB-offset we calculate 1.487 eV (D) and 1.526 eV (E).+e-transition+(line+D)+at+1.490+eV+and+the+h=l:lh+->+e+transition+(line+E)+at+1.516+eV.+with+60%+CB+and+40%+VB-offset+we+calculate+1.487+eV+(D)+and+1.526+eV+(E).>Google Scholar
7. Miller, R. C., Kleinman, D. A. and Gossard, A. C., Phys. Rev. B29, 7085 (1984).Google Scholar
8. Stormer, H. L., Surface Sci. 132, 519 (1983).Google Scholar
9. Schulman, J. N. and McGill, T. C., Phys. Rev. Lett. 39, 1680 (1977); most commonly the notation of the surface symmetry poi-nts is, X' and X respectively instead of, J and K used in this work.Google Scholar
10. Schulman, J. N. and McGill, T. C., Phys. Rev. B19, 6341 (1979).Google Scholar
11. Yuan, Y. R., Pudensi, M.A.A., Vawler, G. A. and Merz, J. L., J. Appl. Phys. 58, 307 (1985).Google Scholar
12. Monemar, B., Phys. Rev. B8, 5711 (1973).CrossRefGoogle Scholar
13. Schulman, J. N. and Yia-Chung Chang, Phys. Rev. B31, 2056 (1985) and YiaChung Chang and Schulman, J. N., Phys. Rev. B31, 2069 (1985).Google Scholar
14. Miller, R. C., Gossard, A. C., Sanders, G. D., Yia-Chung Chang and Schulman, J. N., Phys. Rev. B32, 8452 (1985).Google Scholar