Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:51:12.263Z Has data issue: false hasContentIssue false

Photo-Assisted Mocvd Growth of High Dielectric (Ba,Sr)TiO3 Thin Films on Ni/TiN/Si Substrate for Dram Application

Published online by Cambridge University Press:  10 February 2011

Y. M. Chen
Affiliation:
Space Vacuum Epitaxy Center and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, [email protected]
N. J. Wu
Affiliation:
Space Vacuum Epitaxy Center and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, [email protected]
A. Ignatiew
Affiliation:
Space Vacuum Epitaxy Center and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, [email protected]
Get access

Abstract

High dielectric constant barium strontium titanium oxide (BST) thin films have been deposited on Ni/TiN/Si by photo-assisted metal organic chemical vapor deposition (PhAMOCVD). Planar capacitors based on the Ni/BST/Ni/TiN/Si heterostructure with BST-layer thickness of 50nm exhibited storage densities of about 30 fF/μm2 and leakage current densities of less than 10–7 A/cm2 under bias below 1.8V at room temperature. Nickel as a bottom electrode in this newly designed capacitor structure, can be easily patterned by reactive ion etching, and satisfies the requirement for integration with silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kingon, I., Streiffer, S. K., Basceri, C., and Summerfelt, S. R., MRS Bulletin, 21, p. 46, 1996.Google Scholar
2. Vispute, R. D., Narayan, J., Dovvidenko, K., Jagannadham, K., Parikh, N., Suvkhanov, A., and Budai, J. D., J. Appl. Phys. 80, p. 6720 (1996).Google Scholar
3. Wu, N. J., Lin, H., Xie, K., Li, X. Y., and Ignatiev, A., Physica C, 232, p. 151, 1994.Google Scholar
4. Cho, H. J., Oh, S., Kang, C. S., Hwang, C. S., Lee, B. T., Lee, K. H., Horii, H., Lee, S. I., and Lee, M. Y., Appl. Phys. Lett. 71, p. 3221 (1997).Google Scholar
5. McKee, R. A., Walker, F. J., and Chisholm, M. F., Phys. Rew. Lett. 81, p. 3014 (1998).Google Scholar
6. Cho, H. J. and Kim, H. J., Appl. Phys. Lett., 72, p. 786 (1998).Google Scholar
7. Yuuki, A., Yamamuka, M., Makita, T., Horikawa, T., Shibano, T., Hirano, N., Maeda, H., Mikami, N., Ono, K., Ogata, H., and Abe, H., IEEE IEDM 95, p. 115 (1995).Google Scholar
8. Chen, Y. M., Ritums, D., Wu, N. J., and Ignatiev, A., IEEE ISAF 98, p. 43 (1998).Google Scholar
9. Kotecki, D. E., Integrated Ferroelectrics, 16, p. 1 (1997).Google Scholar
10. Ignatiev, A., Chou, P. C., Zhong, Q., Zhang, X., and Chen, Y. M., Applied Superconductivity, 4, p. 455 (1998).Google Scholar