Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:44:18.791Z Has data issue: false hasContentIssue false

Photo Modified Growth of GaAs by Chemical Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

R. Jothilingam
Affiliation:
Department of Materials Science & Engineering, University of Liverpool, Liverpool, L69 3BX, U.K.
T. Farrell
Affiliation:
Department of Materials Science & Engineering, University of Liverpool, Liverpool, L69 3BX, U.K.
T.B. Joyce
Affiliation:
Department of Materials Science & Engineering, University of Liverpool, Liverpool, L69 3BX, U.K.
P.J. Goodhew
Affiliation:
Department of Materials Science & Engineering, University of Liverpool, Liverpool, L69 3BX, U.K.
Get access

Abstract

We report the photo modified growth of GaAs by chemical beam epitaxy at substrate temperatures in the range 335 to 670°C using triethygallium (TEG) and arsine. A mercury-xenon lamp (electrical power 200 W) provided the irradiation for the photoassisted growth. The growth was monitored in real time by laser reflectometry (LR) using a 670 nm semiconductor laser, and the optically determined growth rate agreed with that obtained from the layer thickness measured by cross sectional transmission electron microscopy. The observed photo-enhancement of the growth rate at low substrate temperatures and inhibition at high substrate temperatures is thermal in origin, consistent with raising the substrate temperature by 10±3°C. Cross sectional transmission electron microscopy showed that the photoassisted layers are essentially free from dislocations

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Donnelly, V.M., Tu, C.W., Beggy, J.C., McCrary, V.R., Lamont, M.G., Harris, T.D., Baiochi, F.A., and Farrow, R.C., Appl. Phys. Lett. 52, 1065 (1988).Google Scholar
2. Aoyagi, Y., Kanazawa, M., Doi, A., Iwai, S., and Namba, S., J. Appl. Phys. 60, 3131 (1986).Google Scholar
3. Yamada, T., Iga, R., and Sugiura, H., Appl. Phys. Lett. 61, 2449 (1992).Google Scholar
4. Dong, H.K., Liang, B.W., Ho, M.C., Hung, S., and Tu, C.W., J. Cryst. Growth 124, 181 (1992).Google Scholar
5. Maury, F., Bouabid, K., Fazouan, N., Guc, A.M., and Esteve, D., Appl. Surf. Sci. 86, 447 (1995).Google Scholar
6. Boyd, A.R., Bullough, T.J., Farrell, T., and Joyce, T.B., J. Cryst. Growth 164, 71 (1996).Google Scholar
7. Roberts, J.C., Boutros, K.S., Bedair, S.M., and Look, D.C., Appl. Phys. Lett. 64, 2397 (1994).Google Scholar
8. Dong, H.K., Hung, S.C.H., and Tu, C.W., J. Electron. Mater. 24, 329 (1995).Google Scholar
9. Sugiura, H., Yamada, T., and Iga, R., Jpn.J.Appl.Phys. 29, Li (1990).Google Scholar
10. Fischer, M., Luckerath, R., Balk, P., and Richter, W., Chemstronics 3, 156 (1988).Google Scholar
11. Beuermann, Th., and Stuke, M., Chemtronics 4, 189 (1989).Google Scholar
12. Rytz-Froidevaux, Y., Salathe, R.P., Gilgen, H.H., and Weber, H.P., Appl. Phys. A 27, 133 (1982).Google Scholar
13. Joyce, T.B., Bullough, T.J., Kightley, P., Kiely, C.J., Xing, Y.R., and Goodhew, P.J., J. Cryst. Growth., 120, 206 (1992).Google Scholar
14. Farrell, T., Armstrong, J.V., and Kightley, P., Appl. Phys. Letters, 59, 1203 (1991).Google Scholar
15. Breiland, W.G., and Killeen, K.P., J. Appl. Phys., 78, 6726 (1995).Google Scholar
16. Jothilingam, R., Farrell, T., Joyce, T.B., and Goodhew, P.J., J. Cryst. Growth. (in press).Google Scholar
17. Dugdale, P., and Jothilingam, R., private communication.Google Scholar
18. Martin, T., Whithouse, C.R., and Lane, P.A., J. Cryst. Growth., 107, 969 (1991).Google Scholar
19. Farrell, T., Armstrong, J.V., Beanland, R., Bullough, T.J., and Joyce, T.B., Semicond. Sci. Technol., 8, 1112 (1993).Google Scholar
20. Boyd, A.R., Joyce, T.B., and Beanland, R., J. Cryst. Growth, 164, 51 (1996).Google Scholar