Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T09:44:13.836Z Has data issue: false hasContentIssue false

Phosphorus Glass Doping of Polycrystalline Silicon During Rapid Thermal Annealing

Published online by Cambridge University Press:  28 February 2011

Bouchaib Hartiti
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Abdelilah Slaoui
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Roland Stuck
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Jean-Claude Muller
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Paul Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Get access

Abstract

We show that the use of phosphorus doped spin-on glasses as diffusion source is an attractive approach for the formation of shallow junctions in polycrystalline silicon materials. Moreover, this very simple doping process using a glass film can be fruitfully associated to rapid thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hartiti, B., Slaoui, A., Muller, J.C. and Siffert, P., Mat. Sci. Eng. B 10, L 11 (1991).Google Scholar
2. Nossen, J.L., Schnable, G.L. and Kern, W., J. Vac. Sci. Technol. 11, 60 (1974).Google Scholar
3. Larsen, A.N., Borisenko, v. E. and Nielsen, N.D., j. de Phys. C5, T44, 427 (1983).Google Scholar
4. Hartiti, B., Slaoui, A., Muller, J.C., Loghmarti, M. and Siffert, P., Appl. Phys. Lett. 59, 3446 (1991).Google Scholar
5. Elliq, M., Slaoui, A., Fogarassy, E., Pattyn, H., Stuck, R. and Siffert, P., Mat. Res. Soc. Symp. Proc. Vol. 219, 1991.Google Scholar
6. Sanchez, G., Castano, J.L., Ganido, J., Martinez, J. and Piqueras, J., J. Electrochem. Soc. 138 (10), 3039 (1991).Google Scholar
7. Sedgwick, T.O., J. Electrochem. Soc. 130, 484 (1983).Google Scholar
8. Singh, R., J. Appl. Phys. 63, R59 (1988).Google Scholar
9. Thakur, R.P.S., Singh, R., Nelson, A.J., Ullal, H.S., Chaudhuri, J. and Gondhalekar, V., J. Appl. Phys. 69 (1), 367 (1991).Google Scholar
10. Koochi, Y., Tabuch, A. and Furumura, Y., J. Electrochem. Soc. 137 (12), 3923 (1990).Google Scholar
11. ANSI/ASTM F31–78, 1979 Annual Book of ASTM Standards, part 43, p. 770.Google Scholar
12. Hartiti, B., Slaoui, A., Muller, J.C., Stuck, R. and Siffert, P., J. Appl. Phys. 71, 5474 (1992).Google Scholar