Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:45:37.348Z Has data issue: false hasContentIssue false

Phosphorus Gettering by Rapid Thermal Processing

Published online by Cambridge University Press:  03 September 2012

Ecuchaib Hartiti
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Abdelilah Slaoui
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Jean-Claude Muller
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Paul Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Get access

Abstract

We have investigated the rapid thermal diffusion of phosphorus into p-type silicon from a spin-on coated film as a function of the process temperature and time duration. The electron diffusion length LD measurements performed by the Surface PhotoVoltage (SPV) method present evidence for a get-tering phenomena since the LD values of the diffused samples are significantly improved. This result is important for the future of RTP in the area of silicon devices where carrier transport is controlled by the bulk lifetime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sedgwick, T. O., J. Electrochem. Soc. 130, 484 (1983).CrossRefGoogle Scholar
2. Singh, R., J. Appl. Phys. 63, R59 (1988).Google Scholar
3. Quat, Vu-Thuong, Eichhammer, W. and Siffert, P., Appl. Phys. Lett. 53, 1928 (1988)CrossRefGoogle Scholar
4. Eichhammer, W., Vu-Thuong-Quat, and Siffert, P., J. Appl. Phys. 66 (8) 3857 (1989).CrossRefGoogle Scholar
5. Eichhammer, W., Hage-Ali, M., Stuck, R. and Siffert, P., Appl. Phys. A, 50, 405 (1990).CrossRefGoogle Scholar
6. Thakur, R. P. S., Singh, R., Nelson, A. J., Ullal, H. S., Chaudhuri, J. and Gondhalekar, V., J. Appl. Phys. 69 (1), 367 (1991).CrossRefGoogle Scholar
7. Koochi, Y., Tabuch, A. and Furumura, Y., J. Electrochem. Soc. 137 (12), 3923 (1990)Google Scholar
8. Geedham, A. M., Goodman, L. A. and Gossenberg, H. F., RCA Rev. 44, 326 (1983).Google Scholar
9. ANSI/ASTM F31–78, 1979 Annual Book of ASTM Standards, part 43 (1979), p. 770.Google Scholar
10. Sparks, D. R. and Chapman, R. G., J Electrochem. Soc. 133, 1202 (1986).Google Scholar
11. Hartiti, B., Eichhammer, W., Muller, J. C. and Siffert, P., Mat. Sci. and Eng. B, 4, 129 (1989).CrossRefGoogle Scholar
12. Hartiti, B., Slaoui, A., Muller, J. C., Stuck, R. and Siffert, P., to be published in J. Appl. Phys., June (1992).Google Scholar
13. Singh, R., Sinha, S., Thakur, R. P. S. and Chon, P., Appl. Phys. Lett. 58, 1217 (1991).Google Scholar
14. Kang, J. S., Schröder, D. K., J. Appl. Phys. 65, 2974 (1989).CrossRefGoogle Scholar
15. Hartiti, B., Vu-Thuong-Quat, , Eichhammer, W., Muller, J. C. and Siffert, P., Appl. Phys. Lett. 55, 873 (1989).CrossRefGoogle Scholar
16. Zagozdzon-Wosik, W., J. Electrochem. Sec. 135, 2065 (1988).Google Scholar
17. Hartiti, B., Muller, J. C. and Siffert, P., Appl. Phys. Lett. 59 (4), 425 (1991).Google Scholar
18. Gosele, U., Morehead, F., Frank, W. and Seeger, A., Appl. Phys. Lett. 38, 157 (1981).CrossRefGoogle Scholar