No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Phosphorous-doping of predominantly (110) oriented polycrystalline CVD diamond films is presented. Incorporation of phosphorous into the diamond grains was accomplished by using novel microwave plasma enhanced chemical vapor deposition (MW PE CVD) growth conditions. The substitutional nature of the phosphorous atom was confirmed by applying the quasi-steady-state photocurrent technique (PC) and cathodoluminescence (CL) measurements at low temperature. Topographical information and the relation between substrate and P-doped film grain orientation was obtained with scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). The optimized growth parameters for P-doped layers on (110) oriented polycrystalline diamond differ substantially from the standard conditions reported in literature for P-doping of single crystalline (111) and (100) oriented diamond surfaces.