Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:28:18.775Z Has data issue: false hasContentIssue false

Phosphorous and Boron Doped Colloidal Silicon Nanocrystals in Conjugated Co-polymers

Published online by Cambridge University Press:  01 February 2011

Vladimir Svrcek
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, Umezono 1-1-1,, Tsukuba, 305-8568, Japan, 81-29-861-5429, 81-29-861-3367
Hiroyuki Fujiwara
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, Umezono 1-1-1,, Tsukuba, 305-8568, Japan
Michio Kondo
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Central 2, Umezono 1-1-1,, Tsukuba, 305-8568, Japan
Get access

Abstract

One-way to improve organic solar cell efficiency is blending conjugated polymer with a second nanocomposite. We report on blending of freestanding boron- and phosphorous-doped environmental friendly silicon nanocrystals (Si-ncs) with two conjugated polymers i.e. (poly(3-hexylthiophene) (P3HT) and poly[methoxy-ethylexyloxy-phenylenevinilene] (MEH PPV)). The electrochemical etching and pulverization of doped porous silicon films are used for fabrication of photesensitive Si-ncs/polymers blends. Processing of Si-ncs dispersed in polymers allows simple tuning of the Si-ncs concentrations in the blends. The blends with high Si-ncs concentrations are prepared and opto-electric properties are compared and discussed. Both types of polymers containing doped Si-ncs showed a photoconductivity response under illumination AM1.5 at ambient temperature and atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Saricifci, N. S. Smilowitz, L. Heeger, A. J. and Wudl, F. Science 258, 1474 (1992).10.1126/science.258.5087.1474Google Scholar
2 Halls, J.M. Walsh, C.A. Greenham, N.C. Marseglia, E.A. Friend, R.H. Moratti, S.C. Holmes, A.B., Nature 376, 498 (1995).10.1038/376498a0Google Scholar
3 Yu, G. Gao, J. Hummelen, J. C. Wudl, F. & Heeger, A. J. Science 270, 1789 (1995).Google Scholar
4 Švrcek, V., Fujiwara, H. Kondo, M. submitted to Sol. Ener. Mat. & Sol. CellsGoogle Scholar
5 Švrcek, V., Sasaki, T. Shimizu, Y. and Koshizaki, N. J. Appl. Phys., 103, 023101 (2008).Google Scholar
6 Beard, M. C. Knutsen, K. P. Yu, P. Luther, J. M. Song, Q. Metzger, W. K. Ellington, R. J. Nozik, A. J. NanoLett. 7, 2506 (2007).Google Scholar
7 Švrcek, V., Slaoui, A. and Muller, J.-C., J. Appl. Phys. 95, 3158 (2004).Google Scholar
8 Wolkin, M. V. Jorne, J. Fauchet, P. M. Allan, G. and Delerue, C. Phys. Rev. Lett. 82, 197 (1999).Google Scholar
9 Sauer, R. Phys. Rev. Lett. 31 376 (1973).Google Scholar
10 Qi, D. Fishbein, E. Drndic, M and Selmic, S. Appl. Phys. Lett. 86, 093103 (2005).Google Scholar
11 Brongersma, M. L. Kik, P. G. Polman, A. Min, K. S. and Atwater, H. A. Appl. Phys. Lett. 76, 351 (2000).Google Scholar
12 Yin, C. Kietzke, T. Neher, D. and Horhold, H.-H., Appl. Phys. Lett. 90, 092117 (2007).10.1063/1.2710474Google Scholar