Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:29:09.200Z Has data issue: false hasContentIssue false

Phosphate Inhibition Effect on Chloride-Induced Crevice Corrosion of Alloy 22

Published online by Cambridge University Press:  28 March 2012

Marcela Miyagusuku
Affiliation:
Comisión Nacional de Energía Atómica, ARGENTINA
Ricardo M. Carranza
Affiliation:
Comisión Nacional de Energía Atómica, ARGENTINA Instituto Sabato, UNSAM/CNEA, ARGENTINA
Raul B. Rebak
Affiliation:
GE Global Research, Schenectady, NY, USA
Get access

Abstract

Alloy 22 has been extensively studied regarding its crevice corrosion (CC) resistance both in pure chloride solutions and in solutions containing different oxyanions that may act as inhibitors of crevice corrosion. The scope of this work was to study the general and localized corrosion behavior of Alloy 22 when phosphate ions were added to a 1 M NaCl solution at 90°C. Results from the electrochemical tests indicate that the size of the passive potential range and the localized corrosion repassivation potential value increased in the presence of phosphate ions. Results from creviced specimens showed a strong inhibition effect of phosphate ions on the chloride induced crevice corrosion of Alloy 22. The critical molar concentration ratio (RCRIT = [phosphate]/[Cl]) to inhibit crevice corrosion was 0.3.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rebak, R.B., Corrosion and Environmental Degradation, Vol. II, Wiley-VCH, Weinheim, 2000 Google Scholar
2. Manning, P. E., Smith, J. D., Nickerson, J. L., Materials Performance, 27, 6, p. 67 (1988)Google Scholar
3. Gordon, G. M., Corrosion, 58, 10, 811-825 (2002)10.5006/1.3287662Google Scholar
4. Ilevbare, G. O., Corrosion, 62, 4, 340-356 (2006)10.5006/1.3280666Google Scholar
5. Kehler, B. A., Ilevbare, G. O. and Scully, J. C., Corrosion, 57, 12, 1042-1065 (2001)10.5006/1.3281677Google Scholar
6. Dunn, D. S., Pan, Y. -M., Chiang, K. T., Yang, L., Cragnolino, G. A., and He, X., JOM, 57, 1, 49-55 (2005)10.1007/s11837-005-0064-7Google Scholar
7. Carranza, R. M., Rodríguez, M. A., Rebak, R. B., Corrosion, 63, 5, 480-490 (2007)10.5006/1.3278400Google Scholar
8. Carranza, R. M., Journal of Metals, 60, 1, 58-65 (2008)Google Scholar
9. Dunn, D. S. and Brossia, C. S., Paper 02548, Corrosion/2002, NACE Intl., Houston, TX Google Scholar
10. Ilevbare, G. O., King, K. J., Gordon, S. R., Elayat, H. A., Gdowski, G. E., and Gdowski, T. S. E., Journal of The Electrochemical Society, 152, 12, B547 (2005)10.1149/1.2104067Google Scholar
11. Mishra, A. K. and Frankel, G. S., Corrosion, 64, 11, 836 (2008)10.5006/1.3279917Google Scholar
12. Miyagusuku, M., Carranza, R. M., Rebak, R. B., Paper 10238, Corrosion/2010, NACE Intl Google Scholar
13. Rincón Ortíz, M., Rodríguez, M. A., Carranza, R. M., and Rebak, R. B., Paper 10237, Corrosion/2010, NACE International Google Scholar
14. Zuo, Y., Wang, H., Zhao, J, Xiong, J., Corrosion Science, 44, 1324 (2002)10.1016/S0010-938X(01)00031-2Google Scholar