Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:32:56.499Z Has data issue: false hasContentIssue false

Phonons and Crystalline Structure of Hg1−xCdxS e Alloys (0 < x ≤ 0.5)

Published online by Cambridge University Press:  31 January 2012

David A. Miranda
Affiliation:
CIMBIOS, Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Cr. 27 Cll. 9, Bucaramanga, Colombia. Email: [email protected]
S. A. López-Rivera
Affiliation:
Laboratorio de Física Aplicada, Departamento de Física, Facultad de Ciencias, Universidad de los Andes, La Hechicera, Mérida-5101, Venezuela
Ch. Power
Affiliation:
Centro de Estudio de Semiconductores, Facultad de Ciencias, Universidad de los Andes, La Hechicera, Mérida-5101, Venezuela
J. A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Cr. 27 Cll. 9, Bucaramanga, Colombia.
M. A. Macías
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Cr. 27 Cll. 9, Bucaramanga, Colombia.
Get access

Abstract

Phonons and crystalline structures of Hg1−xCdxSe alloys (0 ≤ x ≤ 0.5) were studied by Raman spectroscopy and X-ray powder diffraction patterns at 298K. The crystalline alloys were prepared by a special combination of synthesis and the Bridgman method. Experimental data showed a face-centered cubic structure, (No. 216), for all samples, exhibiting a linear dependence for Cd molar fraction, x, for cell parameters, a, and the mass densities, ρ. Phonon frequencies were analyzed using the Romevi-Romevi model for phonons in multicomponent alloys, obtaining a fair agreement with experimental data. Furthermore, an algorithm to implement the Romevi-Romevi model is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brill, G., Chen, Y., STAR-NASA 49, 96 (2011).Google Scholar
2. Chu, J., Sher, A., Physics and Properties of Narrow Gap Semiconductors, (Springer, New York, 2008) pp. 117.Google Scholar
3. Kalb, A., Leute, V., Phys. Status Solidi (a) 5, K199 (1971).Google Scholar
4. Whitsett, C. R., Broerman, J. G., Summers, C. J., “Chapter 2: Crystal Growth and Properties of Hg(1-x)Cd(x)Se Alloys”, in Defects, (HgCd)Se, (HgCd)Te, edited by Willardson, R. and Beer, A.C., Elsevier, 1991, vol. 16 of Semiconductors and Semimetals, pp. 53118.Google Scholar
5. Kumazaki, K., Phys. Stat. Sol. (b) 151, 353 (1989).Google Scholar
6. Kumazaki, K., Nishigachi, N., Cardona, M., Sol. State Comm. 58, 425 (1986).Google Scholar
7. Nelson, D. A., Broerman, J. G., Summers, C. J., Whitsett, C. R., Phys. Rev. B 18, 1658 (1978).Google Scholar
8. Summers, C. J., Broerman, J. G., Nelson, D. A., Whitsett, C. R., Physics of Semiconductors (The Institute of Physics, Bristol and London, Conference Series Number 43, 1978) p. 265.Google Scholar
9. Slodowy, P., Giriat, W., Phys. Status Solidi (b) 48, 463 (1971).Google Scholar
10. Iwanowski, R. J., Dietl, T., Szymanska, W., J. Phys. Solids. 39, 1059 (1978).Google Scholar
11. Rohlfing, M., Louie, S. G., Phys. Rev. B 57, R9392 (1998).Google Scholar
12. Loer, D., Boultif, A., Z. Kristallogr 26, 191 (2007).Google Scholar
13. Lutterotti, L. Material Analysis using Diffraction - MAUD: Computer code JAVA. Trento: University of Trento. 1997-2009. Available from: http://www.ing.unitn.it/~maud/ Google Scholar
14. Rietveld, H. M., J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
15. Young, R. A., The Rietveld Method, (Oxford University Press, USA, 1993).Google Scholar
16. Laugier, J., Bochu, B., CHEKCELL. LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments, ENSP/Laboratoire des Matriaux et du Gnie Physique, BP 46. 38042, 2002.Google Scholar
17. Romčević, M., Romčević, N., J. Alloys Comp. 416, 64 (2006).Google Scholar
18. Martienssen, W., Warlimont, H., Springer Handbook of Condensed Matterand Materials Data, (Springer, Germany, 2005), pp. 575694.Google Scholar