Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:50:32.222Z Has data issue: false hasContentIssue false

Phonon density of states of model ferroelectrics

Published online by Cambridge University Press:  01 February 2011

Narayani Choudhury
Affiliation:
[email protected]@gmail.com, University of Arkansas, Dept. of Physics, Fayetteville, Arkansas, United States
Alexander I Kolesnikov
Affiliation:
[email protected], Oak Ridge National Laboratory, Neutron Sciences Division, Oak Ridge, United States
Helmut Schober
Affiliation:
[email protected], Institut Laue Langevin, Grenoble, France
Eric J Walter
Affiliation:
[email protected], College of William and Mary, Dept. of Physics, Williamsburg, Virginia, United States
Mark Johnson
Affiliation:
[email protected], Institut Laue Langevin, Grenoble, France
Douglas Abernathy
Affiliation:
[email protected], Oak Ridge National Laboratory, Neutron Sciences Division, Oak Ridge, United States
Matthew S Lucas
Affiliation:
[email protected], Oak Ridge National Laboratory, Neutron Sciences Division, Oak Ridge, United States
Get access

Abstract

First principles density functional calculations and inelastic neutron scattering measurements have been used to study the variations of the phonon density of states of PbTiO3 and SrTiO3 as a function of temperature. The phonon spectra of the quantum paraelectric SrTiO3 is found to be fundamentally distinct from those of ferroelectric PbTiO3 and BaTiO3. SrTiO3 has a large 70-90 meV phonon band-gap in both the low temperature antiferrodistortive tetragonal phase and in the high temperature cubic phase.

Key bonding changes in these perovskites lead to spectacular differences in their observed phonon density of states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Choudhury, N. Walter, E.J. Kolesnikov, A.I. and Loong, C.K. Phys. Rev. B77, 134111 (2008) and references therein.10.1103/PhysRevB.77.134111Google Scholar
2 Cohen, R.E. Nature (London) 358, 136 (1992).10.1038/358136a0Google Scholar
3 Vanderbilt, D. Current Opinion in Solid State and Materials Science 2, 701 (1997), and references therein.10.1016/S1359-0286(97)80013-7Google Scholar
4 Uchino, K. Miyazawa, Y. and Nomura, S. Jpn. J. Appl. Phys. 21, 1671 (1982).10.1143/JJAP.21.1671Google Scholar
5 Bennett, J. W. Grinberg, I. and Rappe, A. M. J. Am. Chem. Soc. 130, 17409 (2008) and references therein.Google Scholar
6 Ghosez, P. Cockayne, E. Waghmare, U. V. and Rabe, K. M. Phys. Rev. B60, 836 (1999).Google Scholar
7 Freire, J.D. and Katiyar, R.S. Phys. Rev. B37, 204 (1988), and references therein.Google Scholar
8 Forster, C.M. Grimsditch, M. Li, Z. and Karpov, V. G. Phys. Rev. Lett. 71, 1258 (1993).10.1103/PhysRevLett.71.1258Google Scholar
9 Shirane, G. Rev. Mod. Phys. 46, 437 (1974) and references therein.10.1103/RevModPhys.46.437Google Scholar
10 Sai, N. and Vanderbilt, D., Phys. Rev. B62, 13943 (2000).Google Scholar
11 Gonze, X. et al. , Comp. Mat. Sci. 25, 478 (2002); http://www.abinit.org/ 12.http://www.sourceforge.net/10.1016/S0927-0256(02)00325-7Google Scholar
13 Kuroiwa, Y. Aoyagi, S, Sawada, A. Harada, J, Nishibori, E. Takata, M. Sakata, M. Phys. Rev. Lett. 87, 217601 (2001).Google Scholar
14 Kokalj, A. Comp. Mater. Sci. 28, 155 (2003).Google Scholar