No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The physical processes occurring during the initial stages of ultrafast laser heating of metals are described. Femtosecond laser irradiation is used to create nonequilibrium heating in metals. In such a nonequilibrium state, the electron temperature can be heated up to a few thousand degrees above the lattice temperature. Electron-lattice relaxation is time-resolved in copper and found to be 1 – 4 ps depending on the laser heating ffuence. The technique of time-resolved electron diffraction (a lattice structural and temperature probe) is described. Utilization of this technique for lattice temperature measurement of thin metal films is demonstrated.