Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T06:27:41.574Z Has data issue: false hasContentIssue false

Phase Transitions in Silicon-Carbon-Nitride Compounds

Published online by Cambridge University Press:  01 February 2011

Peter Kroll
Affiliation:
[email protected], University of Texas at Arlington, Chemistry and Biochemsitry, 700 Planetarium Pl, Arlingtom, TX, 76019, United States
Jose Gracia
Affiliation:
[email protected], RWTH Aachen, Inorganic Chemistry, Aachen, 52056, Germany
Ralf Riedel
Affiliation:
[email protected], TU Darmstadt, Institut fuer Materialwissenschaft, Darmstadt, 64287, Germany
Get access

Abstract

The crystal structures of α-Si(NCN)2 and Si2N2(NCN) undergo phase transformations upon compression. A new modification of HP-Si(NCN)2 exhibits all Si atoms in octahedral coordination to N and may be achievable below 30 GPa. In Si2N2(NCN) we find partial increase of coordination for Si, C, and N atoms at about 60 GPa. In both cases, the carbodiimide moiety is the source for the internal reaction that lead to compactification of the structure at elevated pressures. We present 29Si NMR chemical shifts that may help to identify the new coordination environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Riedel, R., Horvath-Bordon, E., Kleebe, H.-J., Kroll, P., Miehe, G., P. A. van Aken, and Lauterbach, S., J. Chin. Ceram. Soc. 2007, 35, 955.Google Scholar
[2] Riedel, R., Greiner, A., Miehe, G., Dressler, W., Fuess, H., Bill, J., Aldinger, F., Angew. Chem. Int. Ed. Engl., 1997, 36, 603.Google Scholar
[3] Lowther, J. E., Phys. Rev. B, 1999, 60, 11943.10.1103/PhysRevB.60.11943Google Scholar
[4] Lowther, J. E., Amkreutz, M., Frauenheim, Th., Kroke, E., Riedel, R., Phys. Rev. B, 2003, 68, 0332011.Google Scholar
[5] Kroll, P., J. Solid State Chem., 2003, 176, 530.Google Scholar
[6] Kroll, P., Riedel, R., Hoffman, R., Phys. Rew. B, 1999, 60, 3126.10.1103/PhysRevB.60.3126Google Scholar
[7] Kroll, P. and Hoffmann, R., J. Am. Chem. Soc. 1999, 121, 4696.Google Scholar
[8] Kresse, G., Hafner, J., J. Phys. Rev. B 1993, 47, 558.Google Scholar
[9] Kresse, G., Hafner, J., J. Phys. Rev. B 1994, 49, 14251.Google Scholar
[10] Kresse, G., Furthmüller, J., J. Comput. Mater. Sci. 1996, 6, 15.10.1016/0927-0256(96)00008-0Google Scholar
[11] Kresse, G., Furthmüller, J., J. Phys. Rev. B 1996, 54, 11169.Google Scholar
[12] Solozhenko, V. L., Schwarz, M., Riedel, R., Solid State Comunications, 2004, 132, 573576 10.1016/j.ssc.2004.08.032Google Scholar
[13] Carduner, K. R., Blackwell, C. S., Hammond, W. B., Reidinger, F., and Hatfield, G. R., J. Am. Chem. Soc., 1990, 112, 4676.10.1021/ja00168a008Google Scholar
[14] Sekine, T., Tansho, M., and Kanzaki, M., Appl. Phys. Lett., 2001, 78, 3050.Google Scholar
[15] Greiner, A., Dissertation, TU Darmstadt, 1997Google Scholar