Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T16:55:00.174Z Has data issue: false hasContentIssue false

Phase Transformations Induced by Grinding: What is Revealed by Molecular Materials

Published online by Cambridge University Press:  26 February 2011

Marc Descamps
Affiliation:
[email protected], University Lille1, Physique, UFR de Physique Bat P5, Villeneuve d'Ascq, 59655, France
Jean François Willart
Affiliation:
jean-francois.willart @univ-lille1.fr, University Lille1, Physique, UFR de Physique Bat P5, Villeneuve d'Ascq, 59655, France
Emeline DUDOGNON
Affiliation:
[email protected], University Lille1, Physique, UFR de Physique Bat P5, Villeneuve d'Ascq, 59655, France
Ronan LEFORT
Affiliation:
[email protected], University Rennes1, GMCM, Rennes, 35, France
Sylvain DESPREZ
Affiliation:
[email protected], University Lille1, Physique, UFR de Physique Bat P5, Villeneuve d'Ascq, 59655, France
Vincent CARON
Affiliation:
[email protected], University Lille1, Physique, UFR de Physique Bat P5, Villeneuve d'Ascq, 59655, France
Get access

Abstract

The purpose of this paper is to show some examples of phase transformations induced by grinding molecular materials. These materials are considered because they are extremely sensitive to external disturbances and are generally very good glass formers. This allows investigating more easily a broad range of the parameters which are open to influence the nature of the end product namely the temperature and intensity of grinding. Such an investigation has also a practical interest in pharmaceutical science. It is shown that the position of the grinding temperature with regard to the glass transition temperature of the compound is a key parameter. Comparison of the effects of temperature and intensity of grinding demonstrates that the driven material concept offers a framework to rationalize all the observed transformations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Shakhtshneider, T. P. and Boldyrev, V.V., in Reactivity of molecular solids, edited by Boldyreva, E. and Boldyrev, V. (Boldyreva, E., Boldyrev, V., John Wiley & Sons, Chichester, UK, 1999), pp. 271.Google Scholar
2 Angell, C.A., Journal of Physical Chemistry 49, 863 (1988).Google Scholar
3 Martin, G. and Bellon, P., Solid State Physics, New York 50, 189 (1997).Google Scholar
4 Enrique, R. A. and Bellon, P., Physical Review Letters 84 (13), 2885 (2000).Google Scholar
5 Enrique, R. A. and Bellon, P., Applied Physics Letters 78 (26), 4178 (2001).Google Scholar
6 Enrique, R. A. and Bellon, P., Physical Review B Condensed Matter and Materials Physics 70 (22), 224106 (2004).Google Scholar
7 Zhang, G. G., Gu, C., Zell, M. T., Burkhardt, R. T., Munson, E. J., and Grant, D. J., Journal of pharmaceutical sciences 91 (4), 1089 (2002).Google Scholar
8 Otsuka, M., Matsumoto, T., and Kaneniwa, N., Chemical and pharmaceutical bulletin 34 (4), 1784 (1986).Google Scholar
9 Crowley, K. J. and Zografi, G., Journal of pharmaceutical sciences 91 (2), 492 (2002).Google Scholar
10 Okamoto, P. R., Lam, N. Q., and Rehn, L. E., Solid state physics New-York 1955 52, 1 (1999).Google Scholar
11 Garnier, S., Petit, S., and Coquerel, G., Journal of thermal analysis and calorimetry 68 (2), 489 (2002).Google Scholar
12 Otsuka, M., Ohtani, H., Kaneniwa, N., and Higuchi, S., Journal-of-pharmacy-andpharmacology 43 (3), 148 (1991).Google Scholar
13 Desprez, Sylvain, Th. doct.: Milieux denses mater., University of Lille 1, 2004.Google Scholar
14 Haase, G. and Nickerson, T. A., Journal of dairy science 49 (2), 127 (1966).Google Scholar
15 Kirk, J.H., Dann, S.E., and Blatchford, C.G., International Journal of Pharmaceutics In Press, Accepted Manuscript.Google Scholar
16 Platteau, C., Lefebvre, J., Affouard, F., Willart, J. F., and Derollez, P., Acta Cryst. B B61, 185 (2005).Google Scholar
17 Platteau, C., Lefebvre, J., Affouard, F., and Derollez, P., J. Appl. Cryst. (under press).Google Scholar
18 Hirotsu, K. and Shimada, A., Bull. Chem. Soc. Japan 47, 1872 (1974).Google Scholar
19 Beche, N. Drapier, Fanni, J., and Parmentier, M., Journal-of-dairy-science 81, 2826 (1998).Google Scholar
20 Lefebvre, J., Willart, J. F., Caron, V., Lefort, R., Affouard, F., and Danede, F., Acta Cryst. B B61, 455 (2005).Google Scholar
21 Earl, W.L. and Parrish, F.W., Carbohydrate Research 115, 23 (1983).Google Scholar
22 Lefort, Ronan, Caron, Vincent, Willart, Jean-Francois, and Descamps, Marc, Solid State Communications 140 (7–8), 329 (2006).Google Scholar
23 Willart, J. F., Caron, V., Lefort, R., Danede, F., Prevost, D., and Descamps, M., Solid State Communications 132, 693 (2004).Google Scholar
24 Willart, J. F., Gusseme, A. De, Hemon, S., Odou, G., Danede, F., and Descamps, M., Solid State Communications 119 (8–9), 501 (2001).Google Scholar
25 Dudognon, E., Willart, J. F., Caron, V., Capet, F., Larsson, T., and Descamps, M., Solid State Communications 138 (2), 68 (2006).Google Scholar
26 Willart, J. F., Lefebvre, J., Danede, F., Comini, S., Looten, P., and Descamps, M., Solid State Communications 135, 519 (2005).Google Scholar
27 Gordon, J. M., Rouse, G. B., Gibbs, J. H., and Risen, W. M. Jr, Journal of Chemical Physics 66 (11), 4971 (1977).Google Scholar