Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T08:45:13.322Z Has data issue: false hasContentIssue false

Phase Transformations Induced by Arsenic Implants into Silicon

Published online by Cambridge University Press:  15 March 2011

James P. Lavine
Affiliation:
Digital and Applied Imaging, Image Sensor Solutions, Eastman Kodak Company, Rochester, NY 14650-2008, U.S.A.
David D. Tuschel
Affiliation:
Imaging Materials & Media, R & D, Analytical Technology Division, Eastman Kodak Company, Rochester, NY 14650-2132, U. S. A.
Donald L. Black
Affiliation:
Imaging Materials & Media, R & D, Analytical Technology Division, Eastman Kodak Company, Rochester, NY 14650-2132, U. S. A.
Get access

Abstract

Micro-Raman spectroscopic investigations of arsenic-implanted silicon show lines characteristic of silicon crystallites even at implant doses above the amorphization threshold. The intensity and frequency of occurrence of the lines increase with the implanted dose. Polarization/orientation Raman studies indicate the crystallites are silicon in the hexagonal phase (Si-IV) and silicon in the diamond phase (Si-I). The latter are oriented differently than the substrate silicon. Monte Carlo simulations of the arsenic ion energy loss and published molecular dynamics studies suggest that each arsenic ion deposits sufficient energy to locally melt the silicon lattice. This is taken as the basis of the present attempt to explain the origin of the crystallites. A one-dimensional numerical model is developed to determine the time scale for the liquid silicon to solidify. The effect of amorphous silicon on the solidification is also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lavine, J. P. and Tuschel, D. D., Bull.Am. Phys. Soc. 44, 1338, paper SC08-8 (1999).Google Scholar
2. Lavine, J. P. and Tuschel, D. D., MRS Symp. Proc. 588, 149 (2000).Google Scholar
3. Tuschel, D. D. and Lavine, J. P., MRS Symp. Proc. 588, 227 (2000).Google Scholar
4. Gogotsi, Y., Baek, C., Kirscht, F., Semicond. Sci. Technol. 14, 936 and 1019 (1999).Google Scholar
5. Weill, G., Mansot, J. L., Sagon, G., Carlone, C., Besson, J. M., Semicond. Sci. Technol. 4, 280 (1989).Google Scholar
6. Tan, T. Y., Foll, H., Hu, S. M., Philos. Mag. A44, 127 (1981).Google Scholar
7. Cerva, H., J. Mater. Res. 6, 2324 (1991).Google Scholar
8. Lannin, J. S., Semiconduct. and Semimet. 21, Part B, Ch. 6 (1984).Google Scholar
9. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
10. Caturla, M. -J., Rubia, T. Diaz de la, Marques, L. A., Gilmer, G. H., Phys. Rev. B54, 16683 (1996).Google Scholar
11. Glawischnig, H., O'Connor, J., Sinclair, F., Harris, M., Current, M., in Ion Implantation Science and Technology, edited by Ziegler, J. (Ion Implantation Technology Co., Yorktown, NY, 1996) Ch. 7.Google Scholar
12. Kagaya, H.-M. and Soma, T., in Properties of Silicon, EMIS Datareviews Series No. 4, Section 1.13 (1988).Google Scholar
13. Wybourne, M. N., in Properties of Silicon, EMIS Datareviews Series No. 4, Section 1.14 (1988).Google Scholar
14. Toulemonde, M., Dufour, C., Paumier, E., Phys. Rev. B46, 14362 (1992).Google Scholar
15. Podesta, M. de, Understanding the Properties of Matter (UCL Press, London, 1996) p 329.Google Scholar
16. Ju, Y. S. and Goodson, K. E., Microscale Heat Conduction in Integrated Circuits and Their Constituent Films (Kluwer Academic, Boston, 1999) Ch. 4.Google Scholar
17. Needs, R. J. and Mujica, A., Phys. Rev. B51, 9652 (1995).Google Scholar