Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:33:48.991Z Has data issue: false hasContentIssue false

Phase Transformations in physical mixtures of Pd-Cu nanoparticles

Published online by Cambridge University Press:  14 March 2013

Vineetha Mukundan
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907, USA
Jun Yin
Affiliation:
Department of Chemistry, SUNY Binghamton, NY 13902, USA
Chuan-Jian Zhong
Affiliation:
Department of Chemistry, SUNY Binghamton, NY 13902, USA
Oana Malis
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907, USA
Get access

Abstract

The temperature induced structural transformations in physical mixtures of 1nm palladium and ultrafine (∼0.5nm) copper nanoparticles supported on carbon were studied using in-situ real time synchrotron based x-ray diffraction. These nanoparticles were subjected to two-step thermal annealing from 25°C to 700°C. The Pd and Cu nanoparticles were found to coalesce forming alloy nanoparticles that subsequently undergo a structural phase transformation from ordered B2 to disordered fcc. The random alloy formed at the end of the thermal treatments was found to be copper-rich.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kinoshita, K., Electrochemical Oxygen Technology, (John Wiley & Sons Inc, NY 1992).Google Scholar
Vracar, L. M., Sepa, D. B. and Damjanovic, A. J., J. Elecrochem. Soc., 133(9), 1835 (1986).CrossRefGoogle Scholar
Wang, X. P., Kariuki, N., Vaughey, J. T., Goodpaster, J., Kumar, R. and Myers, D. J., J. Electrochem. Soc., 155(6), B602 (2008).CrossRefGoogle Scholar
Yin, Z., Zhou, W., Gao, Y., Ma, D., Kiely, C. J. and Bao, X., Chem Eur. J., 18, 4887, (2012).CrossRefGoogle Scholar
Pomerantz, N., Ma, Y. H. and Payzant, E. A., AIChE, 56, No 12, 3062 (2010).CrossRefGoogle Scholar
Kariuki, N. N., Wang, X., Mawdsley, J. R., Ferrandon, M. S., Niyogi, S. G., Vaughey, J. T. and Myers, D. J., Chem. Mater., 22, 4144 (2010).CrossRefGoogle Scholar
Mukundan, V., Wanjala, B. N., Loukrakpam, R., Luo, J., Yin, J., Zhong, C-J. and Malis, O., Nanotechnology, 23, 335705 (2012).CrossRefGoogle Scholar
Malis, O., Byard, C., Mott, D., Wanjala, B. N., Loukrakpam, R., Luo, J. and Zhong, C-J., Nanotechnology 22, 0257011 (2011).CrossRefGoogle Scholar
Malis, O., Radu, M., Mott, D., Wanjala, B., Luo, J. and Zhong, C-J., Nanotechnology, 20, 245708 (2009).CrossRefGoogle Scholar
Yin, J., Hu, P., Wanjala, B., Malis, O. and Zhong, C-J., Chem. Commun., 47, 9885 (2011).CrossRefGoogle Scholar
Zamborini, F. P., Gross, S. M. and Murray, R. W., Langmuir, 17, 481 (2001).CrossRefGoogle Scholar
Mott, D., Yin, J., Engelhard, M., Loukrakpam, R., Chang, P., Miller, G., Bae, I-T., Das, N. C., Wang, C., Luo, J. and Zhong, C-J., Chem. Mater., 22, 261 (2010).CrossRefGoogle Scholar
Li, M, Pd-Cu Phase Diagram, ASM Alloy Phase Diagrams Center, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; http://www1.asminternational.org/AsmEnterprise/APD, ASM International, Materials Park, OH, 2006 Google Scholar