Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:46:08.306Z Has data issue: false hasContentIssue false

Phase transformation and Raman spectra in BaTiO3 nanocrystals

Published online by Cambridge University Press:  01 February 2011

Jian Yu
Affiliation:
National Laboratory for Infrared Physiscs, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 China
X. J. Meng
Affiliation:
National Laboratory for Infrared Physiscs, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 China
J.L. Sun
Affiliation:
National Laboratory for Infrared Physiscs, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 China
G.S. Wang
Affiliation:
National Laboratory for Infrared Physiscs, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 China
J.H. Chu
Affiliation:
National Laboratory for Infrared Physiscs, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 China
Get access

Abstract

In this paper, size-induced ferroelectricit yweakening, phase transformation, and anomalous lattice expansion are observed in nanocrystalline BaTiO3 (nc-BaTiO3) deriv ed b y low temperature hydrothermal methods, and they are w ellunderstood using the terms of the long-range interaction and its cooperative phenomena altered by particle size in covalen t ionic nanocrystals. In cubic nc-BaTiO3, five modes centerd at 186, 254, 308, 512 and 716 cm-1 are observed Raman active in cubic nanophase, and they are attributed to local rhombohedral distortion breaking inversion-symmetry in cubic nanophase. The254 and 308 cm-1 modes are significantly affected not only by the concentration of hydroxyl defects, but also their particular configuration. And the 806 cm-1 modes found to be closely associated with OH - absorbed on grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heath, J.R., Science 270, 1315 (1995).Google Scholar
2. Murray, C. B., Kagan, C. R., and endi, M. G. Baw, Science 270, 1335 (1995).Google Scholar
3. Allan, G., Niquet, Y. M., and Delerue, C., Appl. Phys. Lett. 77, 639 (2000).Google Scholar
4. Cohen, R. E., and Krakauer, H., Phys. Rev. B 42, 6416 (1990).Google Scholar
5. Cohen, R. E., Nature, 358, 136 (1992).Google Scholar
6. Kuroiwa, Y., Aoyagi, S., ada, A. Saw, Harada, J., Nishibori, E., Takata, M., and Sakata, M., Phys. Rev. Lett. 87, e217601 (2001).Google Scholar
7. Ishihara, S., Tachiki, M., and Egami, T., Phys. Rev. B 49, 16123 (1994); ibid 53, 15563 (1996).Google Scholar
8. Frey, M. H., and Payne, D. A., Phys. Rev. B54, 3158 (1996).Google Scholar
9 Chattopadhyay, S., Ayyub, P., ar, V. R. Palk, and Multani, M., Phys. Rev. B 52, 13177 (1995)Google Scholar
10. Yu, J., Sun, J. L., Chu, J. H., and Tang, D. Y., Appl. Phys. Lett. 77, 2807 (2000).Google Scholar
11. Schlag, S. and Eicke, H-F., Solid State Commun. 91, 883 (1994).Google Scholar
12. Venkateswaran, U. D., Nail, V. M., and Naik, R., Phys. Rev. B 58, 14256 (1998).Google Scholar
13. Sood, A. K., Chandrabhas, N., Muthu, D. V. S., and Jayaraman, A., Phys. Rev. B 5, 8892 (1995).Google Scholar
14. Bendale, P., Venigalla, S., Ambrose, J. R., Verink, E. D. Jr, and Adair, J. H., J. Am. Ceram. Soc. 76, 2619 (1993).Google Scholar
15. Her, Y S., Matijevic, E., and Chon, M. C., J. Mater. Res. 10 106 (1995)Google Scholar
16. Yen, F. S., Hsiang, H. I., and Chang, Y. H. Jpn. J. Appl. Phys. 34 6149 (1995)Google Scholar
17. a, S. Tsunekaw, Ito, S., Mori, T., a, K. Ishikaw, Li, Z. Q., and Kawazoe, Y., Phys. Rev. B62 3065 (2000).Google Scholar
18. Ayyub, P., ar, V. R. Palk Chattopadhyay, S., and Multani, M., Phys. Rev. B51 6135 (1995).Google Scholar
19. Tsunekaw a, S., Ishikaw a, K., Li, Z. Q., azoe, Y. Kaw, and Kasuya, A., Phys. Rev. Lett. 85 3440 (2000).Google Scholar
20. Xie, Y., Qian, Y. T., Wang, W. Z., Zhang, S. Y., and Zhang, Y. H., Science 272 1926 (1996)Google Scholar
21. Awschalom, D. D. and DiVincenzo, D. P., Phys. Today 48 43 (1995)Google Scholar
22. Ishidate, T., Abe, S., Takahashi, H., and Mori, N., Phys. Rev. Lett. 78 2397 (1997)Google Scholar
23. Lemanov, V. V., Smirnova, E. P., Syrnikov, P. P., and Tarakano v, E. A., Phys. Rev. B754 3151 (1996)Google Scholar
24. Bednorz, J. G., and Muller, K. A., Phys. Rev. Lett. 52 2289 (1984)Google Scholar
25. Begg, B. D., Vance, E. R., and Now otn y, J. J. Am.Ceram. Soc. 77 3186 (1994)Google Scholar
26 Morf, R., Schneider, T., and Stoll, E., Phys. Rev. B6 462 (1977)Google Scholar
27. Wang, Z. W., Saxena, S. K., Pischedda, V., Liermann, H. P., and Zha, C. S., Phys. Rev. B64 e012102 (2001).Google Scholar
28. Wada, S., Suzuki, T., and Noma, T., Jpn. J. Appl. Phys. 34 5368 (1995).Google Scholar
29. Robins, L. H., Kaiser, D. L., Rotter, L. D., Schenck, P. K., Stauf, G. T., and Rytz, D., J. Appl. Phys. 76 7487 (1994).Google Scholar
30. Perry, C. H., and Hall, D. B., Phys. Rev. Lett. 15 700 (1965).Google Scholar
31. Yi, G. C., Block, B. A., and Wessels, B. W., Appl. Phys. Lett. 71 327 (1997).Google Scholar