Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:30:53.908Z Has data issue: false hasContentIssue false

Phase Stability and Electronic Structure of GaAs1–xNx Alloys

Published online by Cambridge University Press:  15 February 2011

JÖrg Neugebauer
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Chris G. Van De Walle
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Get access

Abstract

We investigate the electronic structure and stability of GaAs1–xNx alloys for several compositions, using state-of-the-art first-principles total-energy calculations. We consider several ordered structures, and in addition we address the case of low-dimensional structures, such as zero-dimensional point defects (NAs in GaAs). Our results reveal two rem ark-able features of this alloy system: (i) a very large bowing of the band gap (the system may even become metallic for compositions around x = 0.5) and (ii) a very limited miscibility. Both properties are related to a distinctive property of this alloy system: a more than 20% lattice mismatch between GaAs and GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ferreira, L. G., Wei, S.-H., and Zunger, A., Phys. Rev. B 40, 3197 (1989).Google Scholar
[2] Marzari, N., Gironcoli, S. de, and Baroni, S., Phys. Rev. Lett. 72, 4001 (1994).Google Scholar
[3] Neugebauer, J. and Walle, C. G. Van de, accepted in Phys. Rev. 13.Google Scholar
[4] Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys 31, L853 (1992).Google Scholar
[5] Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
[6] Louie, S. G., Froyen, S., and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).Google Scholar
[7] Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
[8] Neugebauer, J. and Walle, C. G. Van de, to be published.Google Scholar
[9] Stumpf, R. and Scheffler, M., Comp. Phys. Commun. 79, 447 (1994).Google Scholar
[10] Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 47, 9289 (1993).Google Scholar
[11] Munich, D. P. and Pierret, R. F., Sol.-State Electr. 30, 901 (1987).Google Scholar
[12] Sato, M., in Extended Abstract of the 1994 International Conference on Solid State Devices and Materials (The Japan Society of Applied Physics, Yokohama, 1994).Google Scholar
[13] Walle, C. G. Van de, Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
[14] Hjalmarson, H. P., Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Lett. 44, 810 (1980).Google Scholar
[15] Wolford, D. J., Bradley, J. A., Fry, K., and Thompson, J., in Proceedings of the 17th International Conference on the Physics of Semiconductors, edited by Chadi, J. D. and Harrison, W. A. (Springer-Verlag, New York, 1984).Google Scholar
[16] Liu, X., Pistol, M.-E., Samuelson, L., Schwetlick, S., and Seifert, W., Appl. Phys. Lett. 56, 1451 (1990).Google Scholar