No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
By inducing phase separation parallel to the sol-gel transition of alkoxy-derived silica systems, silica monoliths with well-defined co-continuous macropores were obtained from the systems containing anionic surfactants. We adopted three kinds of anionic surfactants which differ from each other in the length of alkyl chain (CH3(CH2)17SO3Na, CH3(CH2)15SO3Na, CH3(CH2)13SO3Na). Mesopores were also found in the silica skeletons presumably by the supramolecular templating. Characterization of the dried or heat-treated samples was carried out by a scanning electron microscope (SEM) and nitrogen adsorption measurements. Experimental results showed that due to the moderate interaction between silica oligomers and surfactants, most of the surfactants are distributed to the solvent phase which determines the macropore volume. The median size and volume of the macropores could be controlled independently by the starting composition. In the absence of any additive to enhance templating by the surfactant, the samples exhibited only amorphous mesopores.