Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:22:23.126Z Has data issue: false hasContentIssue false

Phase Separation at Interfaces in La2/3Ca1/3MnO3 Thin Films

Published online by Cambridge University Press:  17 March 2011

J. Fontcuberta
Affiliation:
Institut de Ciència de Materials de Barcelona. Campus UAB, Bellaterra 08193. Catalunya., Spain
M. Bibes
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
M. Wojcik
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
E. Jedryka
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
S. Nadolski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
S. València
Affiliation:
Institut de Ciència de Materials de Barcelona. Campus UAB, Bellaterra 08193. Catalunya., Spain
Ll. Balcells
Affiliation:
Institut de Ciència de Materials de Barcelona. Campus UAB, Bellaterra 08193. Catalunya., Spain
B. Martínez
Affiliation:
Institut de Ciència de Materials de Barcelona. Campus UAB, Bellaterra 08193. Catalunya., Spain
Get access

Abstract

We present an extensive physical characterization of La2/3Ca1/3MnO3 (LCMO) epitaxial films grown on SrTiO3 (STO), LaAlO3 (LAO) and NdGaO3 (NGO) substrates. The main difference among these substrates is that they have a different mismatch (∼ 1.2%, -1.8% and - 0.1%, respectively) with the manganite. The films can be coherently grown up to 180 nm for STO and NGO but partial relaxation is observed for LAO. The magnetotransport data indicate that very thin films (<27nm) display non-conventional magnetoresistive properties: a substantial magnetoresistance develops which can be progressively appreciated for STO and LAO films. 55Mn-Nuclear Magnetic Resonance experiments on all these films reveal the presence of non-homogeneous electronic states. These experiments in fact provide clear evidence of the presence of two distinguishable ferromagnetic Mn states and a non-ferromagnetic phase. The possible role of strain-induced charge localization is discussed. It turns out that electronic phase separation occurs in all films irrespectively of the particular substrate used; thus we conclude that strain is not the unique driving force for charge localization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coey, J.M.D. et al. , Adv. in Phys. 48, 167 (1999).Google Scholar
2. Viret, M. et al. , Europhys. Lett. 39, 545 (1997).Google Scholar
3. Dagotto, E. et al. , Phys. Rep. 344, 1153 (2001) and therein.Google Scholar
4. Allodi, G. et al. , Phys. Rev. Lett. 87, 127206 (2001).Google Scholar
5. Allodi, G. et al. , Phys. Rev. B 56, 6036 (1997); G. Papavassiliou et al., Phys. Rev. Lett. 84, 761 (2000).Google Scholar
6. Fäth, M. et al. , Science 285, 1540 (1999).Google Scholar
7. Teresa, J.M. de et al. , Nature (London) 386, 256 (1997).Google Scholar
8. Billinge, S. J. L. et al. , Phys. Rev. B 62, 1203 (2000).Google Scholar
9. Savosta, M.M. and Novák, P., Phys. Rev. Lett. 87, 137204 (2001).Google Scholar
10. Bibes, M. et al. , Phys. Rev. Lett. 87, 067210–1 (2001).Google Scholar
11. NdGaO3 is orthorhombic with aor=5.426 Å, b or=5.496 Å and c or=7.707 Å, resulting in a pseudocubic structure with in plane parameters a=b=3.862 Å and out of plane parameter c=3.854 ÅGoogle Scholar
12. Bibes, M. et al. , J. Appl. Phys. 89, 6686 (2001).Google Scholar
13. Bibes, M. et al. , Appl. Surf. Science (2001) in press.Google Scholar
14. Bibes, M. et al. , Thin Solid Films (2001) in press.; M.J. Casanove et al., MRS Fall Meeting Boston 2001.Google Scholar
15. Bibes, M. et al. , To be published.Google Scholar
16. Laukhin, V. et al. , Phys. Rev. B 56, R10009 (1997).Google Scholar
17. Millis, A. et al. , J. Appl. Phys. 83, 1588 (1998).Google Scholar
18. Sun, J. et al. , Appl. Phys. Lett. 74, 3017 (1999).Google Scholar
19. Panissod, P. et al. , Phys. Rev. B 63, 014408 (2001).Google Scholar