Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:41:44.814Z Has data issue: false hasContentIssue false

Phase Separation and Solidification of Fluid Phosphorus

Published online by Cambridge University Press:  26 February 2011

Yoshinori Katayama
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Kouto 1-1-1, Sayo, 679-5148, Japan, +81-791-58-2632, +81-791-58-0311
Yasuhiro Inamura
Affiliation:
[email protected], Japan Atomic Energy Agency, Quantum Beam Science Directorate, Tokai, Ibaraki, 319-1195, Japan
Hiroyuki Saitoh
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Quantum Beam Science Directorate, Sayo, Hyogo, 679-5148, Japan
Wataru Utsumi
Affiliation:
[email protected], Japan Atomic Energy Agency, Synchrotron Radiation Research Center, Quantum Beam Science Directorate, Sayo, Hyogo, 679-5148, Japan
Get access

Abstract

Fluid phosphorus exhibits a macroscopic phase separation during a pressure-induced first-order phase transition between low-density fluid and high-density fluid. Solidification process of the phase-separated fluid sample was monitored by x-ray radiography and the obtained solid sample was investigated by optical and scanning electron microscopy. A solid mixture of black parts and red parts was obtained from the phase-separated sample. Three different morphologies were observed in the red part of the sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O., Yamakata, Y., and Funakoshi, K., Nature, 403, 170 (2000).Google Scholar
2. Clarck, J. H., Dore, J. C., Granada, J. R., Reed, J., and Walfort, G., Mol. Phys. 42, 861 (1981).Google Scholar
3. Elliot, S. R., Dore, J. C., and Marseglia, E., J. de Physique, 46, C8349 (1985).Google Scholar
4. Bellissent, R., Bergman, C., Ceolin, R., and Gaspard, J. P., Phys. Rev. Lett., 59, 661 (1987).Google Scholar
5. Hohl, D. and Jones, R. O., Phys. Rev. B 50, 17047 (1994).Google Scholar
6. Katayama, Y., Inamura, Y., Mizutani, T., Yamakata, M., Utsumi, W., Shimomura, O., Science 306, 848 (2004).Google Scholar
7. Senda, Y., Shimojo, F. and Hoshino, K., J. Phys.: Condens. Matter 14, 3715 (2002).Google Scholar
8. Brazhkin, V. V., Voloshin, R. N., Popova, S. V., and Lyapin, A. G., New Kinds of Phase Transitions: Transformations in Disordered Substances, ed. by Brazhkin, V. V., Buldyrev, S. V., Ryzhov, V. N., and Stanley, H. E. (NATO Science Series, Kluwer, Dordrecht, 2002), pp. 239254.Google Scholar
9. Mizutani, T., Katayama, Y., Utsumi, W., Funakoshi, K., Yamakata, M. and Shimomura, O., Science and Technology of High Pressure, ed. by (Universities Press, Hyderabad, India, 2000) pp.525528.Google Scholar
10. Katayama, Y. and Tsuji, K., J. Phys.: Condens. Matter, 15, 6085 (2003).Google Scholar
11. Morishita, T., Phys. Rev. Lett. 87, 105701 (2001).Google Scholar
12. Monaco, G., Falconi, S., Crichton, W. A., and Mezouar, M., Phys. Rev. Lett., 90, 255701 (2003).Google Scholar
13. Endo, S., Akahama, T., Terada, S. and Narita, S., Jpn. J. Appl. Phys., 21, L482 (1982).Google Scholar
14. Shirotani, I., Mol. Cryst.Liq. Cyst., 86, 203 (1982).Google Scholar
15. Utsumi, W., Funakoshi, K., Katayama, Y., Yamakata, M., Okada, T., and Shimomura, O., J. Phys.: Condens. Matter, 14, 10497 (2002).Google Scholar