Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:34:31.016Z Has data issue: false hasContentIssue false

Phase Mixture Models for Metallic Materials with Submicrometer Grain Size

Published online by Cambridge University Press:  01 February 2011

Yuri Estrin
Affiliation:
Department of Materials Science and Technology, Clausthal University of Technology, Agricolastr. 6, D-38678 Clausthal-Zellerfeld, GERMANY
Hyoung Seop Kim
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Daejeon, 305–764, KOREA
Mark Bush
Affiliation:
School of Mechanical and Materials Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, AUSTRALIA
Get access

Abstract

Phase mixture models describing the mechanical properties of submicrometer grained metals are presented. In this approach, grain boundaries or cell walls are treated as a separate phase. Two cases are considered: the mechanical response of an ultrafine grained material and the process of grain refinement by equal channel angular pressing. Model predictions with regard to the evolution of the microstructure, strength and texture are verified for Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morris, D. G., “Mechanical Behaviour of Nanostructured Materials”, Materials Science Foundations, Vol. 2., (Trans Tech Publications Ltd, 1998).Google Scholar
2. Kumar, K. S., van Swygenhoven, H. and Suresh, S., Acta mater. 51, 5743 (2003).Google Scholar
3. Estrin, Y, Kim, H. S. and Bush, M. B., “Phase Mixture Models for Metallic Nanomaterials”, Encyclopedia of Nanoscience and Nanotechnology, ed. Nalwa, H. S., (American Scientific Publishers, 2004) (in press).Google Scholar
4. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. and Gleiter, H., Nature Materials 1, 45 (2002).Google Scholar
5. Kim, H. S., Estrin, Y. and Bush, M. B., Acta Mater. 48, 493 (2000).Google Scholar
6. Kim, H. S., Bush, M. B. and Estrin, Y., Mater. Sci. Eng. 276A, 175 (2000).Google Scholar
7. Kim, H. S., Estrin, Y. and Bush, M. B., Mater. Sci. Eng. 316A, 195 (2001).Google Scholar
8. Segal, V. M., Mater. Sci. Eng. 197A, 157 (1995).Google Scholar
9. Valiev, R. Z., Islamgaliev, R. K. and Alexandrov, I. V., Prog. Mater. Sci. 45, 103 (2000).Google Scholar
10. Toth, L., Molinari, A. and Estrin, Y., J. Eng. Mater. Techn. 124, 71 (2002).Google Scholar
11. Baik, S. C., Estrin, Y., Kim, H. S. and Hellmig, R. J., Mater. Sci. Eng. 351A, 86 (2003).Google Scholar
12. Yamakov, V., Wolf, D., Phillpot, S. R. and Gleiter, H., Acta Mater. 50, 61 (2002).Google Scholar
13. Estrin, Y., “Dislocation Density Related Constitutive Modeling”, Unified Constitutive Laws of Plastic Deformation, ed. Krausz, A. S., and Krausz, K. (Academic Press 1996), pp. 69106.Google Scholar
14. Estrin, Y. and Mecking, H., Acta Metall. 32, 57 (1984).Google Scholar
15. Wang, N., Wang, Z., Aust, K.T., and Erb, U., Acta Mater. 43, 519 (1995).Google Scholar
16. Frost, H. J. and Ashby, M. F., “Deformation Mechanism Maps, “The Plasticity and Creep of Metals and Ceramics” (Pergamon Press, 1982).Google Scholar
17. Gleiter, H., Prog. Mater. Sci. 33, 224 (1989).Google Scholar
18. Kim, H. S. and Estrin, Y., Appl. Phys. Lett. 79, 4115 (2001).Google Scholar
19. Estrin, Y. and Kim, H. S., “Strength and Plasticity of Ultrafine Grained Metallic Materials”, Ultrafine Grained Materials II, Proc. TMS Annual Meeting, Seattle, February 2002, eds. Zhu, Y., Langdon, T. G., Mishra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C., pp. 557565.Google Scholar
20. Estrin, Y., Gottstein, G., Rabkin, E. and Shvindlerman, L. S., Scripta Mater. 43, 141 (2000).Google Scholar
21. Estrin, Y., Gottstein, G. and Shvindlerman, L. S., Scripta Mater. (in press).Google Scholar
22. Baik, S. C., Hellmig, R. J., Estrin, Y. and Kim, H. S., Z. Metallkunde 94, 754 (2003).Google Scholar
23. Baik, S. C., Estrin, Y., Hellmig, R. J., Jeong, H. T., Brokmeier, H. G. and Kim, H. S., Z. Metallkunde (in press).Google Scholar