Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:29:59.838Z Has data issue: false hasContentIssue false

Phase Formation Between Codeposited Co-Ta Thin Film and Single Crystal Silicon Substrate

Published online by Cambridge University Press:  15 February 2011

G. Riskin
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, P.O.B. 653, Israel
J. Pelleg
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, P.O.B. 653, Israel
M. Talianker
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, P.O.B. 653, Israel
Get access

Abstract

A combination of near-noble and refractory metal silicides was considered for shallow contacts to silicon in VLSI circuits [1]. The objective of the present work is to investigate formation of phases between codeposited Co-Ta film, of 150 nm thickness, and n-type silicon substrates of (100) or (111) orientation. Characterization of the specimens annealed in the temperature range of 600–1100°C was done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that in addition to the silicide phases of Co and Ta, the intermetallic compound Co2 Ta was also formed. Co2 Ta appears only in the lower temperature range of about 600–800°C. At temperatures of 900–1100°C only the silicon rich phases were present. These are the low resistivity phases useful for devices. No ternary phases have been observed. Silicide formation occurs at a faster rate on (111) oriented silicon substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tu, K. N., Hammer, W. N. and Olowolafe, J. O., J. Appl. Phys. 51, p. 1663 (1980).Google Scholar
2. Zhu, M. F., Suni, I., Nicolet, M. A. and Sands, T., J. Appl. Phys. 56, p. 2740 1984).Google Scholar
3. Hung, L. S., Saris, F. W., Wang, S. Q. and Mayer, J. W., J. Appl. Phys. 9, p. 2416 (1986).Google Scholar
4. Lepselter, M. P. and Andrews, J. M. in Ohmic Contacts to Semiconductors. edited by Schwarts, B. (The Electrochemical Soc. Inc., Princeton, NJ 1969), p. 159.Google Scholar
5. Farooq, M. A., Murarka, S. P., Chang, C. C. and Baiocchi, F. A., J. Appl. Phys. 65, p. 3017 (1989).Google Scholar
6. Murarka, S. P., Silicides for VLSI Applications, Academic, New York, 1983, pp. 156157.Google Scholar
7. Wang, S. Q., Hung, L. S. and Mayer, J. W., Thin Solid Films 162, p. 199 (1988).Google Scholar
8. Appelbaum, A., Eizenberg, M. and Brener, R., J. Appl. Phys. 55, p. 914 (1984).Google Scholar
9. Murarka, S. P., J. Vac. Sci. Technol. 11, p. 775 (1980).Google Scholar
10. van Ommen, A. H., Bulle-Lieuwma, C. W. T. and Langereis, C., J. Appl. Phys. 64, p. 2706 (1988).Google Scholar
11. Korchysky, M., Fountain, R. W., Trans. AIME 215, p. 1033 (1959).Google Scholar
12. Tu, K. N. and Mayer, J. W. in Thin Films - Interdifusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (The Electrochemical Soc.Inc., Princeton, NJ, 1978), p. 378.Google Scholar
13. Rozhanski, N. V., Barg, A. I. and Akimov, A. G., Phys. Stat. Sol. (a) 123, p. 473 (1991).Google Scholar
14. Spiegel, F. X., Bardos, D. and Beck, P. A., Trans. AIME 227, p. 575 (1963).Google Scholar
15. Chen, L. I., Mayer, J. W. and Tu, K. N. in Thin Films and Interfaces, edited by Ho, P. S., and Tu, K. N. (North Holland, New York, 1982), p. 137.Google Scholar
16. Ottaviani, G., Tu, K. N., Mayer, J. W. and Tsaur, B. Y., Appl. Phys. Lett. 36, p. 331 (1980).Google Scholar