Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T13:08:12.310Z Has data issue: false hasContentIssue false

Phase Equilibria and Crystal Growth for LiREF4 Scheelite Laser Crystals

Published online by Cambridge University Press:  01 February 2011

Detlef Klimm
Affiliation:
[email protected], Leibniz Institute for Crystal Growth, Berlin, Germany
Ivanildo A. Dos Santos
Affiliation:
[email protected], IPEN, Center for Lasers and Applications, Sao Paulo, Brazil
Izilda M. Ranieri
Affiliation:
[email protected], IPEN, Center for Lasers and Applications, Sao Paulo, Brazil
Sonia L. Baldochi
Affiliation:
[email protected], IPEN, Center for Lasers and Applications, Sao Paulo, Brazil
Get access

Abstract

The scheelite type laser crystals LiREF4 melt congruently only for RE being one of the elements Er, Tm, Yb, Lu, or possibly Y, respectively. For RE = Eu, Gd, Tb, Dy, or Ho the corresponding scheelites undergo a peritectic melting under the formation of the corresponding rare earth fluoride. The melting behavior of LiREF4 mixed crystals with two or more RE is not yet known well. If RE is a mixture of Gd and Lu, Gd rich solid solutions melt peritectically under formation of (Gd,Lu)F3 and Lu rich solid solutions melt directly without formation of other solid phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thoma, R. E., in Prog. Sci. Technol. Rare Earths, Vol. 2 (Pergamon Press, New York, 1966) pp. 90122.Google Scholar
2. Grzechnik, A., Friese, K., Dmitriev, V., Weber, H.-P., Gesland, J.-Y., Crichton, W. A, J. Phys.: Condens. Matter 17, 763 (2005).Google Scholar
3. Grzechnik, A., Crichton, W. A., Bouvier, P., Dmitriev, V., Weber, H.-P., Gesland, J.-Y., J. Phys.: Condens. Matter 16, 7779 (2004).Google Scholar
4. Keller, C. and Schmutz, H., J. Inorg. Nucl. Chem. 27, 900 (1965).Google Scholar
5. Ivanova, I. A., Petrova, M. A., Podkolzina, I. G., Z. Neorg. Chim. 20, 2292 (1975).Google Scholar
6. Minisini, B., Bonnaud, P., Wang, Q. A., Tsobnang, F., Comp. Mat. Sci. 42, 156 (2008).Google Scholar
7. Shand, W. A., J. Crystal Growth 5, 143 (1969).Google Scholar
8. Quarles, G.J., Esterowitz, L., Rosenblat, G. M., Uhrin, R., Belt, R. F.. In: OSA Proc. on Advances Solids State Laser 13, 306 (1993).Google Scholar
9. Louis, M., Simoni, E., Hubert, S., Gesland, J. Y., Optical Materials 4, 657 (1995).Google Scholar
10. Guggenheim, H., J. Appl. Phys. 34, 2482 (1963).Google Scholar
11. Klimm, D., Ranieri, I. M., Bertram, R., Baldochi, S. L., Mat. Res. Bull. 43, 676 (2008).Google Scholar
12. Ranieri, I. M., Baldochi, S. L., Klimm, D., J. Solid State Chem. 181, 1070 (2008).Google Scholar
13. Ranieri, I. M., Bressiani, A. H. A., Morato, S. P., Baldochi, S. L., J. Alloys. Comp. 379, 95 (2004).Google Scholar
14. dos Santos, I. A., Ranieri, I. M., Klimm, D., Fornari, R., Baldochi, S. L., Cryst. Res. Technol. 43, 1168 (2008).Google Scholar
15. Carruthers, J. R., Grasso, M., J. Electrochem. Soc. 117, 1426 (1970).Google Scholar
16. Klimm, D., Rabe, M., Bertram, R., Uecker, R., Parthier, L., J. Crystal Growth 310, 152 (2008).Google Scholar
17. Abell, J. S., Harris, I. R., Cockayne, B., J. Mat. Sci. 12, 670 (1977).Google Scholar