Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T16:17:38.788Z Has data issue: false hasContentIssue false

pH and Biological Sensing of Ultrathin (10nm) InN Based ISFETs

Published online by Cambridge University Press:  31 January 2011

Yen-Sheng Lu
Affiliation:
[email protected], Institute of Electronics Engineering, National Tsing-Hua University, Hsinchu, Taiwan, Province of China
Cheng-Yi Lin
Affiliation:
[email protected], Institute of Electronics Engineering, National Tsing-Hua University, Hsinchu, Taiwan, Province of China
Yuh-Hwa Chang
Affiliation:
[email protected], Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu, Taiwan, Province of China
Yu-Liang Hong
Affiliation:
[email protected], Department of Physics, National Tsing-Hua University, Hsinchu, Taiwan, Province of China
Shangjr Gwo
Affiliation:
[email protected], Department of Physics, National Tsing-Hua University, Hsinchu, Taiwan, Province of China
J.A Yeh
Affiliation:
[email protected], Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu, Taiwan, Province of China
Get access

Abstract

Ultrathin (∼10 nm) InN ion selective field effect transistors (ISFETs) show a current variation ratio of 3.5 % per pH decade with a response time of less than 10 s. When the ISFET is employed as an electrolyte FET, the current variation of 18 % was measured as the gate bias changes from zero to 0.3 V given a drain-source voltage of 0.1 V. The high current (resistance) variation ratio is attributed to the ultrathin epilayer and an unusual phenomenon of intrinsic strong electron accumulation on InN surface, which enables a chemical/biological sensor with high sensitivity and resolution and permits detection of a slight concentration variation of the electrolyte. The pH response measurement of 10-nm-thick InN ISFETs investigated was performed in an aqueous solution titrated with diluted NaOH and HCl. The Helmholtz potential built at the electrolyte-InN interface is governed by direct adsorption of H+ ions at the surface metal oxides, modulating the channel current of the InN ISFETs. The channel current monotonically decreases as the pH value of an aqueous solution increases from 2 to 10. The sensitivity and resolution were found to be 58.3 mV per decade and 0.02 pH change, respectively. Besides, the detection of DNA hybridization was further performed after the InN surface was modified with MPTMS and probe DNA. A complementary target DNA solution of 100 nM led to a current decrease of approximate 6 uA, corresponding to the current variation of 0.74 %. The hybridization between negatively charged complementary DNA and the immobilized probe DNA caused the depletion of carriers at the InN surface, suppressing the channel current. The functionalized InN ISFETs are suitable for genetic analysis in clinical diagnostics without any labeling reagent. Such an InN-based sensor is appealing in the regime of chemical and biological sensing applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Neuberger, R., Müller, G., Ambacher, O., and Stutzmann, M., Phys. Status Solidi A 185, 85 (2001).Google Scholar
2 Steinhoff, G., Hermann, M., Schaff, W. J., Eastman, L. F., Stutzmann, M., and Eickhoff, M., Appl. Phys. Lett. 83, 177 (2003).Google Scholar
3 Kokawa, T., Sato, T., Hasegawa, H., and Hashizume, T., J. Vac. Sci. Technol. B, 24, 1942 (2006).Google Scholar
4 Mehandru, R., Luo, B., Kang, B. S., Kim, J., Ren, F., Pearton, S., Pan, C., Chen, G., and Chyi, J., Solid State Electron. 48, 351 (2004).Google Scholar
5 Kang, B. S., Ren, F., Kang, M. C., Lofton, C., Tan, W., Pearton, S. J., Dabiran, A., Osinsky, A., and Chow, P. P., Appl. Phys. Lett. 86, 173502 (2005).Google Scholar
6 Kang, B., Pearton, S., Chen, J., Ren, F., Johnson, J., Therrien, R., Rajagopal, P., Roberts, J., Piner, E., and Linthicum, K., Appl. Phys. Lett. 89, 122102 (2006).Google Scholar
7 Kang, B. S., Wang, H. T., Ren, F., and Pearton, S. J., J. Appl. Phys. 104, 031101 (2008).Google Scholar
8 Alifragis, Y., Georgakilas, A., Konstantinidis, G., Iliopoulos, E., Kostopoulos, A., and Chaniotakis, N. A., Appl. Phys. Lett. 87, 253507 (2005).Google Scholar
9 Chaniotakis, N., and Sofikiti, N., Anal. Chim. Acta 615, 1 (2008).Google Scholar
10 Lu, H., Schaff, W., and Eastman, L., J. Appl. Phys. 96, 3577 (2004).Google Scholar
11 Kryliouk, O., Park, H. J., Wang, H. T., Kang, B. S., Anderson, T. J., Ren, F., and Pearton, S. J., J. Vac. Sci. Technol. B 23, 1891 (2005).Google Scholar
12 Chen, C.-F., Wu, C.-L., and Gwo, S., Appl. Phys. Lett. 89, 252109 (2006).Google Scholar
13 Lu, Y.-S., Huang, C.-C., Yeh, J. A., Chen, C.-F., and Gwo, S., Appl. Phys. Lett. 91, 202109 (2007).Google Scholar
14 Lu, Y.-S., Ho, C.-L., Yeh, J. A., Lin, H.-W., and Gwo, S., Appl. Phys. Lett. 92, 212102 (2008).Google Scholar
15 Lu, Y.-S., Chang, Y. H., Hong, Y. L., Lee, H. M., Gwo, S., and Yeh, J. A., Appl. Phys. Lett. 95, 102104 (2009).Google Scholar
16 Lu, H., Schaff, W. J., Eastman, L. F., and Stutz, C. E., Appl. Phys. Lett. 82, 1736 (2003).Google Scholar
17 Rickert, K. A.; Ellis, A. B.; Himpsel, F. J.; Lu, H.; Schaff, W.; Redwing, J. M.; Dwikusuma, F.; Kuech, T. F. Appl. Phys. Lett. 82, 3254 (2003).Google Scholar
18 Mahboob, I., Veal, T. D., McConville, C. F., Lu, H., and Schaff, W. J., Phys. Rev. Lett. 92, 036804 (2004).Google Scholar
19 Mahboob, I., Veal, T. D., Piper, L. F. J., McConville, C. F., Lu, H., Schaff, W. J., Furthmüller, J., and Bechstedt, F., Phys. Rev. B 69, 201307 (2004).Google Scholar
20 Bergveld, P., IEEE Trans. Bio-Med. Eng. 17, 70 (1970).Google Scholar
21 Matsuo, T., Esashi, M., and Abe, H., IEEE Trans. Electron Devices. 26, 1856 (1979).Google Scholar
22 Gimmel, P., Schierbaum, K. D., Gopel, W., Vlekkert, H. H. Van den, Rooy, N. F. De, Sens. Actuators B 1, 345 (1990).Google Scholar
23 Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science 293, 1289 (2001).Google Scholar
24 Zhou, X. T., Hu, J. Q., Li, C. P., Ma, D. D. D., Lee, C. S., and Lee, S. T., Chem. Phys. Lett. 369, 220 (2003).Google Scholar
25 Li, Z., Chen, Y., Li, X., Kamins, T., Nauka, K., and Williams, R., Nano Lett. 4, 245 (2004).Google Scholar
26 Bunimovich, Y. L., Shin, Y. S., Yeo, W.-S., Amori, M., Kwong, G., and Heath, J. R., J. Am. Chem. Soc. 128, 16323 (2006).Google Scholar
27 Gwo, S., Wu, C.-L., Shen, C.-H., Chang, W.-H., Hsu, T. M., Wang, J.-S., and Hsu, J.-T., Appl. Phys. Lett. 84, 3765 (2004).Google Scholar
28 Kobrin, B., Fuentes, V., Dasaradhi, S., Yi, R., Nowak, R., Chinn, J., Ashurst, R., Carraro, C., and Maboudian, R., Semiconductor Equipment and Materials International 2004.Google Scholar
29 Ahn, C. H., Triscone, J.-M., and Mannhart, J., Nature 424, 1015 (2003).Google Scholar
30 Yates, D. E., Levine, S., and Healy, T. W., J. Chem. Soc., Faraday Trans. 70, 1807 (1974).Google Scholar
31 Siu, W. M. and Cobbold, R. S. C., IEEE Trans. Electron Devices 26, 1805 (1979).Google Scholar
32 Bousse, L., Rooij, N. F. De, and Bergveld, P., IEEE Trans. Electron Devices 30, 1263 (1983).Google Scholar
33 Fung, C. D., Cheung, P. W., and Ko, W. H., IEEE Trans. Electron Devices 33, 8 (1986).Google Scholar