Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:48:17.109Z Has data issue: false hasContentIssue false

Pervaporative Dehydration of an Industrial Ketonic Solvent Using Ceramic Silica Membranes

Published online by Cambridge University Press:  11 February 2011

Ane M. Urtiaga
Affiliation:
Dep. Chemical Engineering and Inorganic Chemistry E.T.S.I.I.y T., Universidad de Cantabria, Av. Los Castros s/n. 39005 Santander (SPAIN) Tel.: +34 942202028; Fax: +34 942201591; e-mail: [email protected]
Clara Casado
Affiliation:
Dep. Chemical Engineering and Inorganic Chemistry E.T.S.I.I.y T., Universidad de Cantabria, Av. Los Castros s/n. 39005 Santander (SPAIN) Tel.: +34 942202028; Fax: +34 942201591; e-mail: [email protected]
Inmaculada Ortiz
Affiliation:
Dep. Chemical Engineering and Inorganic Chemistry E.T.S.I.I.y T., Universidad de Cantabria, Av. Los Castros s/n. 39005 Santander (SPAIN) Tel.: +34 942202028; Fax: +34 942201591; e-mail: [email protected]
Get access

Abstract

In this work, the dehydration of an industrial ketonic solvent used in the chemical industry is investigated by means of pervaporation (PV) using commercially available silica membranes (from Sulzer Chemtech and Pervatech BV). The solvent used is an industrial acetone-water mixture, with minor quantities of other reaction products. The initial water content is 30wt.%. The removal of water by PV has been previously experimentally studied using a polymeric Symplex membrane (GKSS), with relative success though the selectivity was low. Recent developments in the inorganic membrane field have led to the commercial availability of silica microporous membrane materials, like those used in this study. The performance of these ceramic membranes is compared, regarding their fluxes and selectivities. A simplified mathematical model is applied in order to be able to predict the pervaporation flux through pervaporation membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Urtiaga, A.M., Gorri, E.D., Ortiz, I., AIChE J. 48: 572581 (2002).Google Scholar
2. Urtiaga, A.M., Gorri, E.D., Beasley, J.K., Ortiz, I., J. Membr. Sci. 156: 275291 (1999)Google Scholar
3. Jonquières, A., Clément, R., Lochon, P., Néel, J., Dresch, M., Chrétien, B., J. Membrane Sci. 5189: 131 (2002)Google Scholar
4. Lipnizki, F. and Trägårdh, G., Sep. & Purification Methods. 30: 49125 (2001)Google Scholar
5. Urtiaga, A.M., Gorri, E.D., Casado, C., Ortiz, I., Accepted Sep. & Purification Tech., presented at ICIM 2002, Dalian, China.Google Scholar
6. Veen van, H.M., Delft, Y.C., Engelen, C.W.R., Pex, P.P.A.C., Sep. & Purification Tech. 22–23: 361366 (2001)Google Scholar
7. Cuperus, F.P., Gemert van, R.W., Sep. & Purification Tech. 27: 225229 (2002)Google Scholar
8. González, and Ortiz, I., Ind. Eng. Chem. Res. 40: 17201731 (2001)Google Scholar
9. Huang, R. Y. M., Shao, P., Feng, X., Anderson, W. A., Ind. Eng. Chem. Res., 41: 29572965 (2002)Google Scholar
10. Casado, C., Gorri, E. D., Aragoza, C., Urtiaga, A. M., Ortiz, I., Submitted to J. Membrane Sci. (2002)Google Scholar
11. Jiraratananon, R., Chanachai, A., Huang, R. Y. M., J. Membrane Sci. 199: 211222 (2002)Google Scholar
12. Feng, X. and Huang, R. Y. M. J. Membrane Sci., 118: 127131 (1996)Google Scholar
13. Urtiaga, A.M., Casado, C., Aragoza, C., Ortiz, I., Submitted to Sep. & Sci. Tech. (2002)Google Scholar