Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:27:38.057Z Has data issue: false hasContentIssue false

Perturbed Angular Correlation Measurements of Vacancy Trapping at Indium Atoms in Quenched Aluminum

Published online by Cambridge University Press:  25 February 2011

M. L. Swanson
Affiliation:
Chalk River Nuclear Laboratories, AECL, Chalk River, Ont., KOJ IJO
T. H. Wichert
Affiliation:
Chalk River Nuclear Laboratories, AECL, Chalk River, Ont., KOJ IJO
L. M. Howe
Affiliation:
Chalk River Nuclear Laboratories, AECL, Chalk River, Ont., KOJ IJO
A. F. Quenneville
Affiliation:
Chalk River Nuclear Laboratories, AECL, Chalk River, Ont., KOJ IJO
O. M. Westcott
Affiliation:
Chalk River Nuclear Laboratories, AECL, Chalk River, Ont., KOJ IJO
Get access

Abstract

The perturbed angular correlation (PAC) method was used to study vacancy trapping at 111In atoms in quenched Al single crystals containing up to 10 ppm In. During annealing from 200–230 K, two different electric field gradients appeared, characterized by the interaction frequencies ν 01 = 67 MHz with asymmetry parameter η = 0.41, and νQ2 = 133 MHz with η = 0. The assignment of ν01 to a single vacancy-In atom pair is discussed. The results indicate that the migration energy of single vacancies in Al is = 0.55 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. N.L., Peterson and R.W., Siegel (eds.), Properties of Atomic Defects in Metals (North-Holland, Amsterdam, 1978).Google Scholar
2. J., Takamura et al (eds.), Point Defects and Defect Interactions in Metals (University of Tokyo Press, Tokyo, 1982).Google Scholar
3. Ehrhart, P., this symposium.Google Scholar
4. Wampler, W.R. and Gauster, W.B., J. Phys. F8 L1 (1978).10.1088/0305-4608/8/1/001CrossRefGoogle Scholar
5. Hood, G.M. and Schultz, R.J., Phil. Mag. 48 11 (1983).10.1080/01418618308234883CrossRefGoogle Scholar
6. Rinneberg, H.H. and Haas, H., Hyperfine int. 4 678 (1978).10.1007/BF01021910Google Scholar
7. Rinneberg, H.H., Semmler, W. and Antesberger, G., Phys. Lett. 66A 57 (1978).10.1016/0375-9601(78)90103-2Google Scholar
8. MUller, H.G., Z. Physik B47 119 (1982).10.1007/BF01441294Google Scholar
9. Pleiter, F. and Prasad, K.G., Hyperfine Int. 20 221 (1984).10.1007/BF02069374Google Scholar
10. Swanson, M.L., Howe, L.M., Moore, J.A. and F–Quenneville, A., Can. J. Phys. 62 826 (1984).10.1139/p84-114CrossRefGoogle Scholar
11. Cotterill, R.M.J., Doyama, M., Jackson, J.J. and Meshii, M. (eds.), Lattice Defects in Quenched Metals (Academic Press, New York, 1965).Google Scholar
12. Rinneberg, H.H., At. Energy Rev. 17 477 (1979).Google Scholar
13. Pleiter, F. and Hohenemser, C., Phys. Rev. B25 106 (1982).10.1103/PhysRevB.25.106Google Scholar
14. Recknagel, E., Schatz, G. and Wichert, Th. in Hyperfine Interactions of Radioactive Nuclei, ed. J., Christiansen, Topics of Current Physics, vol.31 (Springer, Heidelberg 1983) p. 133.Google Scholar
15. Wichert, Th., Hyperfine Int. 15/16 335 (1983).10.1007/BF02159768CrossRefGoogle Scholar
16. Hood, G.M. and Schultz, R.J., J. Phys. F. 10 545 (1980).10.1088/0305-4608/10/4/006CrossRefGoogle Scholar