No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
This paper provides a perspective on submicron-resolution three-dimensional x-ray structural microscopy for the investigation of materials microstructure and evolution on mesoscopic length scales. Microstructure and thermal/stress induced microstructure evolution at the length scale of the local crystal grains, grain boundaries, triple junctions, and dislocation patterning are known to play critical roles in determining the physical properties of materials. Large scale computer simulations and multi-scale modeling are making significant progress on the nanoscale and detailed mesoscale computations are becoming increasingly tractable as new methods are developed. X-ray structural microscopy with submicron resolution now provides a (previously missing) direct experimental link between theory and computations and the mesoscopic behavior of materials microstructure.