Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:37:14.907Z Has data issue: false hasContentIssue false

Perpendicular Magnetoresistance of Microstructured Pillars in Fe/Cr Magnetic Multilayers

Published online by Cambridge University Press:  03 September 2012

M.A.M. Gijs
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands
S.K.J. Lenczowski
Affiliation:
Eindhoven University of Technology, Department of Physics, 5600 MB Eindhoven, The Netherlands
J.B. Giesbers
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands
Get access

Abstract

We have fabricated pillar-like microstructures of high vacuum sputtered Fe/Cr Magnetic Multilayers and measured the giant magnetoresistance effect in the configuration where the measuring current is perpendicular to the film plane from 4.2 K to 300 K. At 4.2 K we find a magnetoresistance of 108 % for multilayers with a Fe thickness of 3 nm and a Cr thickness of 1 nm. The pronounced temperature dependence of the perpendicular magnetoresistance is studied for samples with different Cr thicknesses and tentatively explained by electron-Magnon scattering. The low-temperature data are compared with existing low-temperáture models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baibich, M.N., Broto, J.M., Fert, A., Nguyen van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2427 (1988).Google Scholar
[2] Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W. Phys. Rev. B 39, 4824, (1989).Google Scholar
[3] Parkin, S.S.P., Bhadra, R., and Roche, K.P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
[4] Zhang, S., and Levy, P.M., J. Appl. Phys. 69, 4786 (1991).Google Scholar
[5] Johnson, M., Phys. Rev. Lett. 67, 3594 (1991).Google Scholar
[6] Bauer, G.E.W., Phys. Rev. Lett. 69, 1676 (1992).Google Scholar
[7] Lee, S.-F., Pratt, W.P. Jr, Yang, Q., Holody, P., Loloee, R., Schroeder, P.A., and Bass, J., J. Magn. Magn. Mat. 118, L1 (1993).Google Scholar
[8] Camblong, H.E., Zhang, S., and Levy, P.M., Phys. Rev. B 47, 4735 (1993).Google Scholar
[9] Valet, T., and Fert, A., submitted to Phys. Rev. B.Google Scholar
[10] Pratt, W.P. Jr, Lee, S.-F., Slaughter, J.M., Loloee, R., Schroeder, P.A., and Bass, J., Phys. Rev. Lett. 66, 3060 (1991);Google Scholar
Lee, S.-F., Pratt, W.P. Jr, Loloee, R., Schroeder, P.A., and Bass, J., Phys. Rev. B 46, 548 (1992);Google Scholar
Schroeder, P.A., Bass, J., Holody, P., Lee, S.-F., Loloee, R. Pratt, W.P. Jr, and Yang, Q., to be published.Google Scholar
[11] Schroeder, P., private communication.Google Scholar
[12] Gijs, M.A.M., and Okada, M., Phys. Rev. B 46, 2908 (1992);Google Scholar
Gijs, M.A.M., and Okada, M., J. Magn. Magn. Mat. 113, 105 (1992).Google Scholar
[13] Gijs, M.A.M., Lenczowski, S.K.J., and Giesbers, J.B., Phys. Rev. Lett., to be published.Google Scholar
[14] Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
[15] We define the MR as (R Max R sat ) / R sat , where R Max is the maximum resistance at zero field and R sat the resistance value at saturation of the giant MR effect.Google Scholar
[16] Mills, D.L., Fert, A., and Campbell, I.A., Phys. Rev. B 4, 196 (1971).Google Scholar
[17] Mattson, J.E., Brubaker, M.E., Sowers, C.H., Conover, M., Qiu, Z., and Bader, S.D., Phys. Rev. B 44, 9378 (1991).Google Scholar
[18] Gijs, M.A.M., Giesbers, J. B., Lenczowski, S.K.J., and Janssen, H.H.J.M., Appl. Phys. Lett., to be published.Google Scholar
[19] Bauer, G.E.W., Gijs, M.A.M., Lenczowski, S.K.J., and Giesbers, J.B., J. Magn. Magn. Mat., to be published.Google Scholar
[20] Büttiker, M., IBM J. Res. Dev. 32, 317 (1988).Google Scholar