Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:17:14.155Z Has data issue: false hasContentIssue false

Perpendicular Magnetic Anisotropy on W-based Spin-Orbit Torque CoFeB | MgO MRAM Stacks

Published online by Cambridge University Press:  27 February 2015

Andreas Kaidatzis*
Affiliation:
Department of Materials, INN, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Athens, Greece
Vasileios Psycharis
Affiliation:
Department of Materials, INN, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Athens, Greece
José Miguel García-Martín
Affiliation:
IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
Cristina Bran
Affiliation:
ICMM-Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Manuel Vázquez
Affiliation:
ICMM-Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Dimitrios Niarchos
Affiliation:
Department of Materials, INN, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Athens, Greece
*
*Corresponding author e-mail: [email protected]
Get access

Abstract

We study W | Ta | CoFeB | MgO stacks for spin-orbit torque MRAM applications. A strong perpendicular magnetic anisotropy is obtained after annealing for CoFeB layer thickness of 0.9 nm or 1.2 nm and for specific W/Ta ratios, were the Ta layer thickness is between 0.3 nm and 1 nm. Furthermore, the desired high-spin orbit coupling β-phase of W is preserved even after annealing at 350°C. We argue that an efficient B getter, like Ta, is necessary for the coherent crystallization of the CoFeB | MgO interface that allows for the establishment of perpendicular magnetic anisotropy.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Miron, I. M., Garello, K., Gaudin, G., Zermatten, P.-J., Costache, M. V., Auffret, S., Bandiera, S., Rodmacq, B., Schuhl, A., and Gambardella, P., Nature 476, 189 (2011)CrossRefGoogle Scholar
Miron, I. M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., and Gambardella, P., Nature Materials 9, 230 (2010)CrossRefGoogle Scholar
Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H. D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., and Ohno, H., Nature Materials 9, 721 (2010)CrossRefGoogle Scholar
Pai, C.-F., Liu, L., Li, Y., Tseng, H. W., Ralph, D. C., and Buhramn, R. A., Appl. Phys. Lett. 101, 122404 (2012)CrossRefGoogle Scholar
Pai, C.-F., Nguyen, M.-H., Belvin, C., Henrique, L. V.-Leão, Ralph, D. C., and Buhrman, R. A., Appl. Phys. Lett. 104, 082407 (2014)CrossRefGoogle Scholar
Choi, D., Wang, B., Chung, S., Liu, X., Darbal, A., Wise, A., Nuhfer, N.T., Barmak, K., Warren, A.P., Coffey, K.R., and Toney, M.F., J. Vac. Sci. Technol. A 29, 051512 (2011)CrossRefGoogle Scholar