Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T02:59:08.223Z Has data issue: false hasContentIssue false

Periodic Mesoporous SiCO Glasses with Cubic Symmetry Stable at 1000°C

Published online by Cambridge University Press:  10 February 2011

Raphaël Blum
Affiliation:
Laboratoire de Chimie de laMatière Condensée, UPMC, Paris, France.
Valérie Goletto
Affiliation:
Laboratoire de Chimie de laMatière Condensée, UPMC, Paris, France.
Bérangére Toury
Affiliation:
Laboratoire de Chimie de laMatière Condensée, UPMC, Paris, France.
Florence Babonneau
Affiliation:
Laboratoire de Chimie de laMatière Condensée, UPMC, Paris, France.
Get access

Abstract

A periodic mesoporous organosilica (PMO) with cubic Pm3n structure has been prepared from bis(trimethoxysilyl)ethane and cetytriethylammonium chloride. The sample has been heat treated under argon up to 1000°C, and the pyrolysis intermediates were analysed by X-ray diffraction using synchrotron radiation, multinuclear solid state NMR (29Si, 13C and 1H) and N2 adsorption-desorption experiments. The cubic Pm3n structure is retained after pyrolysis at 1000°C. The sample is a SiCO glass with mixed SiCxO4-x units (x = 0, 1, 2) and a very large surface area of 730 m2/g.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D. H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
2 Ying, J.Y., Mehnert, C.P., Wong, M.S., Angew. Chem. Int. Ed. 38, 56 (1999).Google Scholar
3 Stein, A., Melde, B. J., Schroden, R. C., Adv. Mater. 12, 1403 (2000) and references herein.Google Scholar
4 Sayari, A., Hamoudi, S., Chem. Mater. 13, 3151 (2001) and references herein.Google Scholar
5a) Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., Terasaki, O., J. Am. Chem. Soc. 121, 9611 (1999). b) B. J. Melde B. T. Holland, C. F. Blanford, A. Stein, Nature 402, 867 (1999). c) T. Asefa, C. Yoshima-Ishii, M. J. MacLachlan, G. A. Ozin, J. Mater. Chem. 10, 1751 (2000).Google Scholar
6 Rouxel, T., Massouras, G.,Sorarù, G.D., J. Sol-Gel Sci. & Techn. 14, 87 (1999).Google Scholar
7 Soraru, G.D., Modena, S., Guadagnino, E., Colombo, P., Egan, J., Pantano, C., J.Am.Ceram.Soc. 85 [6], 1529(2002).Google Scholar
8 Guan, S., Inagaki, S., Ohsuna, T and Terasaki, O., J. Am. Chem. Soc. 122, 5660 (2000).Google Scholar
9a) Kim, M.J., Ryoo, R., Chem. Mater. 11, 487 (1999). b) V.Goletto, V. Dagry, F. Babonneau, Mat. Res. Soc. Symp. Proc. 576 21 (1999).Google Scholar
10 Sakamoto, Y., Kaneda, M., Terasaki, O., Zhao, D.Y., Kim, J.M., Stucky, G., Shin, H.J., Ryoo, R., Nature 408, 449 (2000).Google Scholar
11 Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., Ozin, G. A., Angew. Chem. Int. Ed. 39(10), 1808 (2000).Google Scholar