Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:36:07.319Z Has data issue: false hasContentIssue false

Periodic Heating in SLSI

Published online by Cambridge University Press:  01 February 2011

Kal. Renganathan Sharma Ph D PE*
Affiliation:
Professor I/C, Research Activities Vellore Institute of Technology (Deemed University) Vellore, TN, India 632 014 Tel: 91-416-243091, Fax: 91-416-243092 Email: jyoti [email protected] Res: 91(416) 241367
Get access

Abstract

The periodic heating is studied using hyperbolic heat wave propagative equation complex variables. The flux reversal is observed. Fin assemblies may reduce the heat accumulated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Azhar, K., 1998, US Patent #, 6,301,779, Advanced Thermal Solutions, Norwood, MA, USA.Google Scholar
2. Sharma, K. R., 2000, National Heat Transfer Conference, Pittsburgh, PA, USA.Google Scholar
3. Sharma, K. R., Turton, R., 1998, Powder Technology, 99, 2, 109.Google Scholar
4. Kunii, D., Levenspiel, O., 1991, Fluidization Engineering, Butterworth Heinemann, Boston, USA.Google Scholar
5. Mickley, H. S., Fairbanks, L. R., 1955, AIChE J., 3, 374.Google Scholar
6. Renganathan, K., Turton, R., 1989, Thermal Inertia Effects in Fluidized Bed to Surface Heat Transfer, 10th International Conference on Fluidized Bed Combustion, San Francisco, CA, USA.Google Scholar
7. Renganathan, K., Turton, R., 1989, Approximate Solution of Hyperbolic Heat Equation to Predict Heat Transfer in Fluidized Beds to Immersed Surfaces, 81st AIChE Annual Meeting, San Francisco, CA, USA.Google Scholar
8. Sharma, K. R., 2000, Fluidized Bed Heat Transfer in Combustors - Hyperbolic Heat Wave Partial Differential Equation Solution by the Method of Laplace Transform and Series Solution by the Method of Frobenius, SERMCAS 2000, New Orleans, LA, USA.Google Scholar
9.9. Sharma, K. R., 2001, Modified Bessel Composite Function of the First Kind Solution of Hyperbolic Heat Wave Equation, 222 ACS National Meeting of the ACS, Chicago, IL, USA.Google Scholar
10. Biot, M.A., 1970, Variational Principles in Heat Transfer, Oxford University Press, UK.Google Scholar
11. Maxwell, J. C., 1873, A Treatise on Electricity and Magnestism, Oxford University Press, UK.Google Scholar
12. Vernotte, P., 1958, Les paradoxes de la theorie continue de l'equation de la chaleur, Hebd, C. R.. Seanc. Acad. Sci. Paris, 246, 22, 3154.Google Scholar
13. Boley, B. A., 1964, Heat Transfer Structures and Materials, Pergamon, NY, USA.Google Scholar
14. Mickley, H. S., Sherwood, T. S. and Reed, C. E., 1957, Applied Mathematics in Chemical Engineering, McGraw Hill, New York, USA.Google Scholar