Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:42:36.792Z Has data issue: false hasContentIssue false

Periodic Arrangement of GE Islands on SI(111)

Published online by Cambridge University Press:  15 February 2011

H. Hibino
Affiliation:
NTT Basic Research Laboratories, 3–1, Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan
N. Shimizu
Affiliation:
NTT Basic Research Laboratories, 3–1, Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan
Y. Shinoda
Affiliation:
NTT Basic Research Laboratories, 3–1, Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan
T. Ogino
Affiliation:
NTT Basic Research Laboratories, 3–1, Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan
Get access

Abstract

We describe periodic arrangements of Ge islands grown on Si (111) using Ge deposition at room temperature and post-deposit annealing. A Mesh pattern of relaxed Ge islands is obtained under conditions of a Ge thickness of 10 Å and an annealing temperature of 400°C. The Mesh pattern is due to the preferential crystallization of α-Ge films at steps and at out-of-phase boundaries of 7×7 reconstructions. We also demonstrate that the Ge island pattern is modified when Ge is grown on a substrate changed by Si homoepitaxy or In adsorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Copel, M., Reuter, M. C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Lett. 63, 632 (1989).CrossRefGoogle Scholar
[2] Eaglesham, D. J., Unterwald, F. C., and Jacobson, D. C., Phys. Rev. Lett. 70, 966 (1993).Google Scholar
[3] Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
[4] Gossmann, H.-J., Feldman, L. C., and Gibson, W. M., Phys. Rev. Lett. 53, 294 (1984).CrossRefGoogle Scholar
[5] Marée, P. M., Nakagawa, K., Mulders, F. M., van der Veen, J. F., and Kavanagh, K. L., Surf. Sci. 191, 305 (1987).Google Scholar
[6] Shinoda, Y., Shimizu, N., Hibino, H., Nishioka, T., Heimlich, C., Kobayashi, Y., Ishizawa, S., Sugii, K., and Seki, M., Appl. Surf. Sci. 60/61, 112 (1992).CrossRefGoogle Scholar
[7] Tanaka, H., Udagawa, M., Itoh, M., Uchiyama, T., Watanabe, Y., Yokotsuka, T., and Sumita, I., Ultramicroscopy 42–44, 864 (1992).CrossRefGoogle Scholar
[8] Homma, Y. (private communication).Google Scholar
[9] Köhler, U., Jusko, O., Pietsch, G., Müller, B., and Henzler, M., Surf. Sci. 248, 321 (1991).CrossRefGoogle Scholar
[10] Hibino, H., Shimizu, N., and Shinoda, Y., Extended abstracts of the 1993 International Conference on Solid State Devices and Materials, pp. 252.Google Scholar
[11] Osakabe, N., Tanishiro, Y., Yagi, K., and Honjo, G., Surf. Sci. 109, 353 (1981).Google Scholar
[12] Tung, R. T. and Schrey, F., Phys. Rev. Lett. 63, 1277 (1989).Google Scholar
[13] Köhler, U., Demuth, J. E., and Hamers, R. J., J. Vac. Sci. Technol. A 7, 2860 (1989).CrossRefGoogle Scholar
[14] Nakahara, H. and Ichikawa, M., Appl. Phys. Lett. 61, 1531 (1992).CrossRefGoogle Scholar
[15] Iwanari, S., Kimura, Y., and Takayanagi, K., J.Cryst. Growth 119, 241 (1992).Google Scholar
[16] Takaoka, K., Yoshimura, M., Yao, T., Sato, T., Sueyoshi, T., and Iwatsuki, M., Phys. Rev. B 48, 5657 (1993).Google Scholar
[17] van der Gon, A. W. Deiner and Tromp, R. M., Phys. Rev. Lett. 69, 3519 (1992).Google Scholar
[18] Endo, A. and Ino, S., Surf. Sci. 293, 165 (1993).CrossRefGoogle Scholar