Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:10:21.569Z Has data issue: false hasContentIssue false

Performances Of Porous Silicon Optical Waveguides

Published online by Cambridge University Press:  10 February 2011

M. Araki
Affiliation:
The Japan Society for the Promotion of Science, [email protected]
M. Takahashi
Affiliation:
Division of Electronic and Information Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan
H. Koyama
Affiliation:
Division of Electronic and Information Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan
N. Koshida
Affiliation:
Division of Electronic and Information Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan
Get access

Abstract

To verify the availability of a porous silicon (PS) technology for applications to photonic devices, fundamental chracteristics of PS waveguides are investigated. An edge-emitting device with an optical waveguide is fabricated by current modulation technique during anodization. The net internal loss for prepared samples is measured by varying the length of excitation beam. The experimental results show that the internal loss increases with decreasing the operation wavelength, possibly due to self-absorption and Rayleigh scattering. Besides the step-index PS waveguides, buried-type waveguides can be fabricated based on a doping modulation technique. A theoretical analysis about a bending loss is also carried out. The results of experimental and theoretical analyses suggest that a curveture radius capable of guiding lightwave can be significantly minimized, owing to a difinitely different refractive indedices between the core and cladding region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
3. Matsumoto, T., Daimon, M., mimura, H., Kanemitsu, Y., and Koshida, N., J. Electrochem.. Soc. 142, 3528 (1995).Google Scholar
4. Maly, P., Kudma, J., Trojanek, F., and Hospodkova, A., Thin Solid films 276, 84 (1996).Google Scholar
5. Ueno, K., Ozaki, T., Koyama, H., and Koshida, N. in Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, edited by Collins, R.W., Fauchet, P. M., Shimizu, I., Vial, J. C., Shimada, T., and Alvisatos, A. P. (Mater. Res. Soc. Proc. 452, Pittsburgh, PA, 1997) pp. 699704.Google Scholar
6. Loni, A., Simons, A.J., Cox, T. I., Calcott, P. D. J., and Canham, L. T., Electron. Lett. 31, 1288 (1995).Google Scholar
7. Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P., and Fauchet, P. M., Nature 384, 338 (1996).Google Scholar
8. Berger, M. G., Dieker, C., Thönissen, M., Vescan, L., Lüth, H., Münder, H., Theiß, W., Wernke, M. and Grosse, P., J. Phys. D: Appl. Phys. 27, 1333 (1994).Google Scholar
9. Loni, A. and Canham, L. T., Thin solid Films 276, 143 (1996).Google Scholar
10. Araki, M., Koyama, H. and Koshida, N., Appl. Phys. Lett. 68, 2999 (1996).Google Scholar
11. Pavesi, L., Mazzoleni, C., Tredicucci, A., and Pellegrini, V., Appl. Phys. Lett. 67 3280 (1995).Google Scholar
12. Araki, M., Koyama, H. and Koshida, N., J. Appl. Phys. 80, 4841 (1996).Google Scholar
13. Shaklee, K. L., Nahory, R.E., and Leheny, R. F., J. Luminescence 7, 284 (1973).Google Scholar
14. Arrand, H. F., Benson, T. M., Loni, A., Krueger, M. H., Thoenissen, M., and Lueth, H., Electron. Lett. 33, 1724 (1997).Google Scholar
15. Takahashi, M., Araki, M., and Koshida, N., J. Appl. Phys. (to be submitted).Google Scholar
16. Gloge, D., Appl. Opt. 11, 2506 (1972).Google Scholar