Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:12:38.482Z Has data issue: false hasContentIssue false

PERFORMANCE of HYDROGENATED a-Si:H SOLAR CELLS with DOWNSHIFTING COATING

Published online by Cambridge University Press:  27 June 2011

Bill Nemeth
Affiliation:
National Renewable Energy Laboratory, Golden, CO, 80401
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, Golden, CO, 80401
Haorong Wang
Affiliation:
Sun Innovations, Inc, Fremont, CA 94539
Ted Sun
Affiliation:
Sun Innovations, Inc, Fremont, CA 94539
Benjamin G. Lee
Affiliation:
National Renewable Energy Laboratory, Golden, CO, 80401
Anna Duda
Affiliation:
National Renewable Energy Laboratory, Golden, CO, 80401
Qi Wang
Affiliation:
National Renewable Energy Laboratory, Golden, CO, 80401
Get access

Abstract

We apply a thin luminescent downshifting (LDS) coating to a hydrogenated amorphous Si (a-Si:H) solar cell and study the mechanism of possible current enhancement. The conversion material used in this study converts wavelengths below 400 nm to a narrow line around 615 nm. This material is coated on the front of the glass of the a-Si:H solar cell with a glass/TCO/p/i/n/Ag superstrate configuration. The initial efficiency of the solar cell without the LDS coating is above 9.0 % with open circuit voltage of 0.84 V. Typically, the spectral response below 400 nm of an a-Si:H solar cell is weaker than that at 615 nm. By converting ultraviolet (UV) light to red light, the solar cell will receive more red photons; therefore, solar cell performance is expected to improve. We observe evidence of downshifting in reflectance spectra. The cell Jsc decreases by 0.13 mA/cm2, and loss mechanisms are identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richards, B.S., Solar En. Matls. and Sol. Cells 90, 2329, 2006.10.1016/j.solmat.2006.03.035Google Scholar
2. van der Ende, B.M., Aarts, L., Meijerink, A., Phys. Chem. Chem. Phys. 11, 11081, 2009.10.1039/b913877cGoogle Scholar
3. Strumpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Svrcek, V., del Canizo, C., and Tobias, I., Sol. En. Matls. and Sol. Cells 91, 238249, 2007.10.1016/j.solmat.2006.09.003Google Scholar
4. Dieke, G.H. and Crosswhite, H.M. 2, Appl. Opt., 1963.10.1364/AO.2.000675Google Scholar
5. Klampaftis, E., Ross, D., McIntosh, K.R., Richards, B.S., Solar En. Matls. and Solar Cells 93, 1182, 2009.10.1016/j.solmat.2009.02.020Google Scholar
6. Green, M.A., Emery, K., Hishikawa, Y., and Warta, W., Prog. Photovolt: Res. Appl. 19, 84, 2009.10.1002/pip.1088Google Scholar
7. Carlson, D.E., IEEE Trans. Elec. Dev. 24, 449, 1977.10.1109/T-ED.1977.18756Google Scholar
8. Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E. and Miazza, C., Solar En. Matls. and Solar Cells 90, 2952, 2006.10.1016/j.solmat.2006.06.002Google Scholar
9. Xu, Y., Nemeth, B., Hasoon, F., Hong, L., Duda, A., Wang, Q., MRS Proc. Spring 2010, 1245-A07-15, 2010.Google Scholar