Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:26:02.004Z Has data issue: false hasContentIssue false

Peg-Containing Surfactants Enhance the Ultrasonic Permeabilizability of Liposomes

Published online by Cambridge University Press:  15 February 2011

Hung-Yin Lin
Affiliation:
Department of Chemical Engineering, Columbia University, 801 Mudd Bldg., 500 West 120th Street, New York, NY 10027-6623, USA.
James L. Thomas
Affiliation:
Department of Chemical Engineering, Columbia University, 801 Mudd Bldg., 500 West 120th Street, New York, NY 10027-6623, USA.
Get access

Abstract

The susceptibility of phosphatidylcholine liposomes to rupture by ultrasound was investigated. The liposomes were treated with (or had incorporated) a surface active dopant. The dopants studied here all contain polymers or oligomers of ethylene glycol as their hydrophilic “headgroup” component. All dopants strongly increased the ultrasonic permeabilizability of liposomes, as measured by the rate of release of a self-quenching fluorescent dye, at concentrations that caused no increase in permeability in the absence of ultrasound. The surface active dopants reached maximal effectiveness at about 1% of their critical micelle concentrations (CMCs). Using the roughly inverse relationship between CMC and membrane partition coefficient, we estimate that these maximally effective concentrations correspond approximately to the onset of headgroup contact among the surfactants in the membrane. Two surfactants, a PEG-lipid and a Pluronic triblock polymer, can be irreversibly incorporated into liposomes to give formulations that could in principle be used as drug delivery vehicles. The Pluronic polymer offers the possibility of additional temperature responsivity, owing to its highly temperaturedependent CMC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allen, T. M. Agrawal, A. K. Ahmad, I. Hansen, C. B. and Zalipsky, S. J. Liposome Res., 4, 1 (1994).Google Scholar
2. Allen, T. M. and Moase, E. H. Adv. Drug Delivery Rev., 21, 117 (1996).Google Scholar
3. Moghimi, S. M. Hunter, A. C. and Murray, J. C. Pharmacol Rev., 53, 283 (2001).Google Scholar
4. Tordeux, C. and Fournier, J.-B. Europhys. Lett., 60, 875 (2002).Google Scholar
5. Huang, C. Biochemistry, 8, 344 (1969).Google Scholar
6. Miller, M. W. Ultrasound in Medicine & Biology, 26, S59 (2000).Google Scholar
7. Bao, S. Thrall, B. D. Gies, R. A. and Miller, D. L. Cancer Res., 58, 219 (1998).Google Scholar
8. Bao, S. Thrall, B. D. and Miller, D. L. Ultrasound in Medicine & Biology, 23, 953 (1997).Google Scholar
9. Allen, T. M. Adv. Drug Delivery Rev., 13, 285 (1994).Google Scholar
10. Allen, T. M. and Chonn, A. FEBS Letters, 223, 42 (1987).Google Scholar
11. Allen, T. M. Hansen, C. Martin, F. Redemann, C. and Yau-Young, A. F., Biochim. Biophys Acta, 1066, 29 (1991).Google Scholar
12. Allen, T. M. Hansen, C. B. and Lopes, D. E. de Menezes, Adv. Drug Delivery Rev., 16, 267 (1995).Google Scholar
13. Allen, T. M. Hansen, C. and Rutledge, J. Biochim. Biophys Acta, 981, 27 (1989).Google Scholar
14. Hope, M. J. Bally, M. B. Webb, G. and Cullis, P. R. Biochim. Biophys Acta, 812, 55 (1985).Google Scholar
15. Husseini, G. A. Myrup, G. D. Pitt, W. G. Christensen, D. A. and Rapoport, N. Y. J. Control. Release, 69, 43 (2000).Google Scholar
16. Husseini, G. A. Rapoport, N. Y. Christensen, D. A. Pruitt, J. D. and Pitt, W. G. Colloids and Surfaces B: Biointerfaces, 24, 253 (2002).Google Scholar
17. Miller, M. W. Miller, D. L. and Brayman, A. A. Ultrasound in Medicine & Biology, 22, 1131 (1996).Google Scholar
18. Duzgunes, N. Straubinger, R. M. Baldwin, P. A. and a. et, Biochemistry, 24, 3091 (1985).Google Scholar
19. Lin, H.-Y. and Thomas, J. L. Langmuir, 19, 1098 (2003).Google Scholar
20. Johnsson, M. Silvander, M. Karlsson, G. and Edwards, K. Langmuir, 15, 6314 (1999).Google Scholar
21. McPherson, A. Crystallization of Biological Macromolecules, Cold Spring Harbor Laboratory Press, Laguna Niguel, 1998.Google Scholar
22. Heerklotz, H. and Seelig, J. Biophys. J., 78, 2435 (2000).Google Scholar
23. Kenworthy, A. K. Simon, S. A. and McIntosh, T. J. Biophys. J., 68, 1903 (1995).Google Scholar
24. Kenworthy, A. K. Hristova, K. Needham, D. and McIntosh, T. J. Biophysical Journal, 68, 1921 (1995).Google Scholar
25. Alexandridis, P. and Hatton, T. A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96, 1 (1995).Google Scholar
26. Evans, E. and Rawicz, W. Phys. Rev. Lett., 64, 2094 (1990).Google Scholar
27. Zhelev, D. V. and Needham, D. Biochim. Biophys Acta, 1147, 89 (1993).Google Scholar
28. Moroz, J. and Nelson, P. Biophys. J., 72, 2211 (1997).Google Scholar
29. Leroux, J.-C. Roux, E. Garrec, D. Le, Hong, K. and Drummond, D. C. J. Control. Release, 72, 71 (2001).Google Scholar
30. Anyarambhatla, G. R. and Needham, D. J. Liposome Res., 9, 491 (1999).Google Scholar