Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T04:36:07.382Z Has data issue: false hasContentIssue false

PbZr0.52Ti0.48O3 Ferroelectric Thin Films on Silicon by KrF Excimer Laser Ablation

Published online by Cambridge University Press:  15 February 2011

K. Ebihara
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN, [email protected]
F. Mitsugi
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN, [email protected]
M. Yamazato
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN, [email protected]
T. Ikegami
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN, [email protected]
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916, USA
Get access

Abstract

The Au / PbZrxTi1-xO3 (PZT) ferroelectrics / YBa2Cu3O7-x (YBCO) superconductor / yttria-stabilized zirconia (YSZ) heterostructures were prepared on Si (100) substrate by KrF excimer laser ablation technique. The x-ray diffraction patterns showed that the PZT films prepared on YBCO / YSZ /Si at 550°C, O2 100 mTorr and a laser energy density of 2 J/cm2(5Hz) are pure perovskite and highly oriented with the (00l) orientation. The polarization (P)-electric field (E) characteristics showed the remanent polarization Pr of 23 µC/cm2 and coercive field Ec, of 35 kV/cm. Pr of the PZT capacitor degraded to one half of initial value after about 1010 switching cycles (50 kHz).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bjormander, C., Grishin, A. M., Moon, B. M., Lee, J. and Rao, K. V., Appl. Phys. Lett. 64, 3646 (1994).10.1063/1.111191Google Scholar
2 Lin, H., Wu, N. J., Xie, K., Li, X. Y and Ignatiev, A., Appl. Phys. Lett. 65, 953 (1994).10.1063/1.112159Google Scholar
3 Liu, B. T., Hao, Z., Chen, Y F., Xu, B., Chen, H., Wu, F., Zhao, B. R., Kislinskii, Yu. and Stepantsov, E., Appl. Phys. Lett. 74, 2044 (1999).10.1063/1.123751Google Scholar
4 Senzaki, J., Mitsunaga, O., Uchida, T., Ueno, T. and Kuroiwa, K., Jpn. J. Appl. Phys. 35, 4195 (1996).10.1143/JJAP.35.4195Google Scholar
5 Sanchez, F., Varela, M., Queralt, X., Auiar, R. and Morenza, J. L., Appl. Phys. Lett. 61, 2228 (1992).10.1063/1.108276Google Scholar
6 Tokumitsu, E., Itani, K., Moon, Bum-Ki and Ishiwara, H., Jpn. J. Appl. Phys. 34, 5202 (1995).10.1143/JJAP.34.5202Google Scholar
7 Tiwari, P., Zheleva, T. and Narayan, J., Appl. Phys. Lett. 63, 30 (1993).10.1063/1.109740Google Scholar
8 Horita, S., Kawada, T. and Abe, Y, Jpn. J. Appl. Phys. 35, L1357 (1996).10.1143/JJAP.35.L1357Google Scholar
9 Pechen, E. V., Schoenberger, R., Brunner, B., Ritzinger, S., Renk, K. F., Sidorov, M. V. and Oktyabrsky, S. R., J. Appl. Phys. 74, 3614 (1993).10.1063/1.354500Google Scholar
10 Maruyama, T., Saitoh, M., Sakai, I., Hidaka, T., Yano, Y. and Noguchi, T., Appl. Phys. Lett. 73, 3524 (1998).10.1063/1.122824Google Scholar
11 Tyunina, M., Wittborn, J., Rao, K. V., Levoska, J., Leppavuori, S. and Sternberg, A., Appl. Phys. Lett. 74, 3191 (1999).10.1063/1.124103Google Scholar
12 Grishin, A. M., Yamazato, M., Yamagata, Y. and Ebihara, K., Appl. Phys. Lett. 72, 620 (1998).10.1063/1.120824Google Scholar