Published online by Cambridge University Press: 26 February 2011
Recently there has been a focused effort to develop reliable nanoscopic writing and reading capabilities. Dip-pen nanolithography (DPN) has emerged as a convenient method to deliver nanoscale materials onto a substrate by leveraging scanning probe microscopy capability. A new application for the DPN method is the field of microdetonics which is the microscale decomposition and study of reactions of explosives. Results are presented for patterning pentaerythritol tetranitrate (PETN) and cyclotetramethylene tetranitramine (HMX) on silicon and mica substrates. The ultimate goal is to pattern both energetic materials in nanoscale registry and investigate their reaction and decomposition at the nanoscale due to heating or shock initiation. In addition to patterning of high explosives, a discussion on the effect of surface energy on patterning rates is investigated. This knowledge will be applicable to inks beyond high explosives.