Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:42:05.424Z Has data issue: false hasContentIssue false

Patterning of LiGaO2 and LiAlO2 by Wet and Dry Etching

Published online by Cambridge University Press:  10 February 2011

J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu CA 90265
B. L. Chai
Affiliation:
CREOL, University of Central Florida, Orlando FL 32816
F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07974
J. M. Zavada
Affiliation:
US Army Research Office, Research Triangle Park NC 27709
Get access

Abstract

LiGaO2 and LiAlO2 have similar lattice constants to GaN, and may prove useful as substrates for III-nitride epitaxy. We have found that these materials may be wet chemically etched in a number of acid solutions, including HF, at rates between 150–40,000 Å/min. Dry etching with SF6/Ar plasmas provides faster rates than Cl2/Ar or CH4/H2/Ar under Electron Cyclotron Resonance conditions, indicating the fluoride etch products are more volatile that their chloride or metalorganic/hydride counterparts. Dry etch rates are low ( < 2, 000 Å/min), providing high selectivity (>5) over the nitrides. The incorporation of hydrogen in these materials is also of interest because this could provide a reservoir of hydrogen that may passivate dopants in overlying nitride films. In 2H implanted samples, 50 % of the deuterium is lost by evolution from the surface by annealing at 400 °C for 20 min and all of the deuterium is gone at 700°C. The diffusivity of 2H is ∼10-13 cm2/s at 250°C in LiA1O2, approximately two orders of magnitude higher than in LiGaO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
2. Nakamura, S., Jap. J. Appl. Phys. 30, L1705 (1991).Google Scholar
3. Kuznia, J. N., Asif Khan, M. and Olson, D. T., J. Appl. Phys. 73, 4700 (1993).Google Scholar
4. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992) and references theirs.Google Scholar
5. Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
6. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yanada, T., Matshusita, T., Kiyokuand, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35, L74 (1996).Google Scholar
7. Sverdlov, B. N., Martin, G. A., Morkoc, H. and Smith, D. J., Appl. Phys. Lett. 67, 2063 (1995).Google Scholar
8. Ponce, F. A., Krusor, B. S., Major, J. S., Piano, W. E. and Welch, D. F., Appl. Phys. Lett. 67, 410 (1995).Google Scholar
9. Zubrilov, A. S., Nikolaev, V. I., Dimitriev, V. A., Irvine, K. G., Edmond, J. A. and Carter, C. H., Inst. Phys. Conf. Ser. 141, 525 (1994).Google Scholar
10. Sitar, Z., Paisley, M. J., Yuan, B., Ruan, J., Choyke, W. J. and Davis, R. F., J. Vac. Sci. Technol. B 8, 316 (1990).Google Scholar
11. Lin, M. E., Sverdlov, B., Zhou, G. L. and Morkoc, H., Appl. Phys. Lett. 62, 3479 (1993).Google Scholar
12. Liu, H., Frenhel, A. C., Kim, J. G. and Park, R. M., J. Appl. Phys. 74, 6124 (1993).Google Scholar
13. Kuramata, A., Horino, K., Domen, K., Shinohara, K. and Tanahashi, T., Appl. Phys. Lett. 67, 2521 (1995).Google Scholar
14. George, T., Jacobson, E., Pike, W. T., Chang-Chien, P., Khan, M. A., Yang, J. W. and Mahajan, S., Appl. Phys. Lett. 68, 337 (1996).Google Scholar
15. Detchprohm, T., Amano, H., Hiromatsu, K. and Akasaki, I., Appl. Phys. Lett. 61, 2688 (1992).Google Scholar
16. Ponce, F. A., Bour, D. P., Gotz, W., Johnson, N. M., Helava, H. I., Grzegory, I., Jan, J. and Porowski, S., Appl. Phys. Lett. 68, (1996).Google Scholar
17. Porowski, S., Gregory, I. and Jun, J., High Pressure Chemical Synthesis, ed. Jurczak, J. and Baranowski, B. (Elsevier, Amsterdam 1989).Google Scholar
18. Leszczynski, M., Gregory, I. and Bockowsk, M., J. Cryst. Growth 126, 601 (1993)Google Scholar
19. Chai, B. L. J. Cryst. Growth (to be published)Google Scholar
20. Schetzina, J. F. et al (to be published).Google Scholar
21. Pearton, S. J., Nakano, T. and Gottscho, R. A., J. Appl. Phys. 69, 4206 (1991).Google Scholar