No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
In-situ patterning of AlxGa1-xAs (0≦x≦0.7) using a electron-beam (EB) and chlorine gas (Cl2) and the application to “In-Situ EB Lithography” are investigated. In this patterning method, an ultra-thin GaAs oxide is utilized as a resist film. The oxide resist prevents C12 gas etching of the underlying material and can be also patterned by an EB irradiation under a C12 pressure, which brings about selective etching of GaAs/AlGaAs layers. Etch rates of AlxGa1-xAs (0<x≦0.7) are 20-30 nm/min, which is almost equal to that of GaAs (20 nm/min). Using this technique of EB-induced patterning, a novel concept “In-Situ EB Lithography” is proposed, where the whole processes for EB lithography are successively conducted in a ultra-high vacuum multi-chamber system. An overgrown layer on a GaAs surface patterned by this “In-Situ EB Lithography” shows a good morphology.