Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:36:17.986Z Has data issue: false hasContentIssue false

Passive-Film Formation on Metal Substrates in IM LiPF6/EC-DMC Solutions

Published online by Cambridge University Press:  10 February 2011

Ronald A. Guidotti
Affiliation:
Sandia National Laboratories P.O. Box 5800, Albuquerque, NM 87185–0614, [email protected]
Gerald C. Nelson
Affiliation:
Sandia National Laboratories P.O. Box 5800, Albuquerque, NM 87185–0614, [email protected]
Get access

Abstract

The initial irreversible capacity loss in lithium-ion cells has been attributed to passive-film formation on the carbon and graphite anodes during the first intercalation. We have examined the nature of these passive films on select metal substrates. We studied film formation on Cu, 304 stainless steel, and Mo cycled in a 1M LiPF6/ethylene carbonate (EC)-dimethyl carbonate (DMC) solution (1:1 v/v) over a potential range of 3 V to below 0 V. Film formation occurs readily on each of the metals and involves both solvent and salt species. The composition, thickness, and distribution of the films depends strongly on the substrate. The redox processes that occur during film formation and the potential for Li plating are highly dependent on the substrate composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shu, Z. X., McMillan, R. S., and Murray, J. J., J. Electrochem. Soc., 140 (4), 922 (1993).10.1149/1.2056228Google Scholar
2. Yazami, R., Zaghib, K., and Deschamps, M, J. Power Sources, 52, 55 (1994).10.1016/0378-7753(94)01933-9Google Scholar
3. Zheng, T., Liu, Y., Fuller, E. W., Tseng, S., von Sacken, U., and Dahn, J. R., J. Electrochem. Soc., 142 (8), 2581 (1995).10.1149/1.2050057Google Scholar
4. Guidotti, R. A. and Johnson, B. J., Proc. 37th Power Sources Conf., 219 (1994).Google Scholar
5. Peled, E., Golodnitsky, D., Ardel, G., Machem, C., Bar Tow, D., and Eshkenazy, V., Mat. Res. Soc. Symp. Proc., Vol. 393, 209 (1995).Google Scholar
6. Bar Tow, D., Peled, E., and Burstein, L., Ext. Abst. 835, Vol. 96–2, Fall Mtg. of The Electrochen. Soc., San Antonio, TX, 1028 (1996).Google Scholar
7. Aurbach, D., Daroux, M., Faguy, P., and Yeager, E., J Electrochem. Soc, 134, 1611 (1987).10.1149/1.2100722Google Scholar
8. Aurbach, D. and Chusid, O., J. Electrochem. Soc., 140, L1 (1993).Google Scholar
9. Aurbach, D., Ein-Ely, Y., and Zaban, A., J. Electrochem. Soc., 141, L1 (1994).10.1149/1.2054718Google Scholar
10. Aurbach, D. and Zaban, A., J. Electroanal. Chem., 365, 41 (1994).Google Scholar
11. Naji, A., Ghanbaja, J., Humbert, B., Willmann, P., and Billaud, D., J. Power Sources, 63, 33 (1996).Google Scholar
12. Zaban, A. and Aurbach, D., J. Power Sources, 54, 289 (1995).10.1016/0378-7753(94)02086-IGoogle Scholar
13. Aurbach, D. and Moshkovich, M., op cit. ref. 5, Extended Abst. 807, 987 (1996).Google Scholar
14. Ein-Eli, Y., Thomas, S. R., and Koch, V. R., J. Electrochem. Soc., 144 (4), 1159 (1997).10.1149/1.1837566Google Scholar