Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:25:15.592Z Has data issue: false hasContentIssue false

Passive Layer Breakdown on Titanium in Doped and Undoped Artificial Saliva

Published online by Cambridge University Press:  15 February 2011

Ioana Demetrescu
Affiliation:
Politehnica University, Str. Polizu no. 1, 78126 Bucharest, Romania
Mihai V. Popa
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania
Ecaterina Vasilescu
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania
Paula Drob
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania
Belarisa Popescu
Affiliation:
Politehnica University, Str. Polizu no. 1, 78126 Bucharest, Romania
Daniela Ionita
Affiliation:
Politehnica University, Str. Polizu no. 1, 78126 Bucharest, Romania
Cora Vasilescu
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania
Get access

Abstract

The aim of this work is to investigate the long term (3000 exposure hours) tendency of passive layers on titanium to breakdown in Tani-Zucchi and Carter-Brugirard artificial saliva undoped and doped with chloride and fluoride ions. The non-uniformity of the saliva pH (from 7.88 to 5.73 and extreme case 2.15) was simulated. The following techniques were used: potentiostatic, potentiodynamic and linear polarization, the monitoring of the open circuit potentials vs. exposure time and atomic force microscopy. The breakdown (pitting) potential at about +2.9 V and the re-passivation potential at +2.4 V in Tani-Zucchi artificial saliva were determined. So, the pitting protection potential is very noble and can not be reached in human body.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reclaru, L. and Meyer, J. M., Biomaterials 19, 85 (1998).Google Scholar
2. Hoar, T. P. and Mears, D. C., Proc. R. Soc. A 294, 480 (1966).Google Scholar
3. Strietzel, R., Hosch, A., Kalbfleisch, H. and Buch, D., Biomaterials 19, 1495 (1998).Google Scholar
4. Cai, Z., Nakajima, H., Woldu, M., Berglund, A., Bergman, M. and Okabe, T., Biomaterials 20, 183 (1999).Google Scholar
5. Souto, R. M. and Burstein, G. T., J. Mater. Sci. Materials in Medicine 7, 337 (1996).Google Scholar
6. Burstein, G. T. and Souto, R. M., Electrochim. Acta 40, 1881 (1995).Google Scholar
7. Cabrini, M. and Pastore, T., Proc. 15th International Corrosion Congress, 2002, paper 394.Google Scholar
8. Duday, D., Frateur, L., Keddam, M., Marcus, P., Vivier, V. and Zanna, S., Proc. 15th International Corrosion Congress, 2002, paper 457.Google Scholar
9. Khan, M. A., Williams, R. L. and Williams, D. F., Biomaterials 17, 2117 (1996).Google Scholar
10. Ciolac, S. and Vasilescu, E., Rev. Roum. Chim. 44, 431 (1999).Google Scholar
11. Popa, M. V., Vasilescu, E., Drob, P., Vasilescu, C., Popescu, B., Ionescu, D. and Popa, M. F., Rev. Chim. (Buch.) 53, 590 (2002).Google Scholar
12. Popa, M. V., Vasilescu, E., Drob, P., Vasilescu, C., Mirza-Rosca, J. and Lopez, A. Santana, Mater. Corr. 53, 51 (2002).Google Scholar
13. Popa, M. V., Vasilescu, E., Drob, P., Demetrescu, I., Popescu, B., Ionescu, D. and Vasilescu, C., Mater. Corr. in press.Google Scholar
14. Schmidt, A. M. and Azambuja, D. S., Proc. 15th International Corrosion Congress, 2002, paper 365.Google Scholar
15. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, 1974 pp.213.Google Scholar