Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T02:47:27.725Z Has data issue: false hasContentIssue false

Passivation of Silicon Dioxide Surface Hydroxyl Groups to Control Selectivity During Chemical Vapor Deposition of Copper from Copper(I) Compounds

Published online by Cambridge University Press:  21 February 2011

Ajay Jain
Affiliation:
Department of Chemical Engineering, University of New Mexico, Albuquerque, NM 87131
J. Farkas
Affiliation:
Department of Chemical Engineering, University of New Mexico, Albuquerque, NM 87131
T T. Kodas
Affiliation:
Department of Chemical Engineering, University of New Mexico, Albuquerque, NM 87131
M. J. Hampden-Smith
Affiliation:
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
A.A. Gelatos
Affiliation:
Advanced Products Research and Development Laboratory, Motorola Inc., Austin, TX, 78721
R. Marsh
Affiliation:
Applied Materials Inc. Austin, TX, 78741.
C. J. Mogab
Affiliation:
Advanced Products Research and Development Laboratory, Motorola Inc., Austin, TX, 78721
Get access

Abstract

We have studied selective chemical vapor deposition (CVD) of copper using (hfac)Cu(VTMS). Copper films were deposited selectively onto tungsten (W) and titanium nitride (TiN) in the presence of silicon dioxide (SiO2) surfaces in a warm-wall CVD reactor. Selective deposition was achieved by in-situ passivation of SiO2 surface hydroxyls by exposure to a silylating agent. These agents, such as dichloro-dimethylsilane and hexamethyldisilazane (HMDS), suppressed the nucleation rate of copper on SiO2 compared to metal surfaces. Control over loss of selectivity during CVD was achieved by maintaining the flow of the silylating agent during deposition. The passivation chemistry was studied by FTIR on a model Cab-O-Sil surface which showed that dichlorodimethylsilane and HMDS pre-dosing shielded the hydrogen-bonded surface hydroxyl groups making them inaccessible to the precursor molecule. An understanding of SiO2 surface modification and control over loss of selectivity during CVD is a key for successful selective copper deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pai, P.L., Ting, C.H., Chiang, C., Wei, C.-S., and Fraser, M., Mat. Res. Soc. Symp. Proc. VL SI V. 359 (1990).Google Scholar
2. Berry, A.D., Holm, R.T., Fateni, M., and Gaskill, D.K., J. Mater. Res., 5, 1109 (1990).CrossRefGoogle Scholar
3. Shin, H.K., Chi, K.-M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F. and Farr, J.D., Angew. Chem. Advanced Materials, 3. 246 (1991).Google Scholar
4. Shin, H.K., Chi, K.-M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F. and Farr, J.D., Chem. Mater., 4. 788 (1992).Google Scholar
5. Jain, A., Chi, K.-M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F. and Farr, J.D., J. Mater. Res., 1, 261 (1992).CrossRefGoogle Scholar
6. Reynolds, S.K., Smart, C.J., Baran, E.F., Baum, T.H.. Larson, C.E., and Brock, P.J., Appl. Phys. Lett. 59. 2332 (1991).Google Scholar
7. Kumar, R., Maverick, A.W., Fronczek, F.R., Lai, G. and Griffin, G.L., 200th American Chemical Society Meeting, Atlanta, April 1991, Abstract INOR 256.Google Scholar
8. Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A., and Hochberg, A.K., J. de Physique, IV. 1, C2–271 (1992).Google Scholar
9. Temple, D. and Reisman, A., 1. Electrochem. Soc., 136, 3525 (1989).Google Scholar
10. Herment, R.I. Van, Spendlove, L.B., and Sievers, R.E., J. Electrochtem. Soc., 112(2), 1123 (1965).Google Scholar
11. Arita, Y., Mat. Res. Soc. Proc., VLSI V. 335 (1990).Google Scholar
12. Kaloyeros, A.E., Feng, A., Garhart, J., Brooks, K.C., Gosh, S.K., Saxena, A.N., and Luethers, F., J. Electronic Mat., 19. 271 (1990).Google Scholar
13. Lai, W.G., Xie, Y., and Griffin, G.L., G.L., , J. Electrochem. Soc., 13M, 3499 (1991).Google Scholar
14. Hampden-Smith, M.J. and Kodas, T.T., MRS Bulletin (in press 1993).Google Scholar
15. Broadbent, E.K., Flanner, J.M., VanDenHock, W.G.M., Connick, I.-W.H., IEEE Trans. Electron Dev. July, 952 (1991).Google Scholar
16. Jain, A., Farkas, J., Kodas, T.T., Chi, K.-M., and Hampden-Smith, M.J., Appl. Phys. Lett., 161, 2662 (1992).Google Scholar
17. Jain, A., Chi, K.-M., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F. and Farr, J.D., Chem. Mat. 3, 995 (1991).Google Scholar
18. Gelatos, A.V., Poon, S., Marsh, R., Mogab, J.C., and Thompson, M., VLSI Symp. Japan, Kyoto, May 1993, to be published.Google Scholar
19. Farkas, J., Hampden-Smith, M.J. and Kodas, T.T., Chem. Mater., submitted.Google Scholar