Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:05:54.439Z Has data issue: false hasContentIssue false

Particle Coarsening in Multiphase Ternary Systems

Published online by Cambridge University Press:  15 February 2011

W.C. Holmes
Affiliation:
Physics Department, Taylor University, Upland, IN 46989, [email protected]
J.J. Hoyt
Affiliation:
Computational Materials Science Department, Sandia National Laboratories, Livermore, CA 94551-9161, [email protected]
Get access

Abstract

Particle Coarsening in ternary, multiphase -multicomponent, systems is quite different than its binary counterpart in that the presence of one phase can affect the coarsening behavior of another. We have shown by analytic analysis and numerical simulation that the interaction between two coexisting phases depends on: solution thermodynamics, diffusivities, and equilibrium concentration differences between matrix and precipitate phases. Therefore, different ternary systems create different cross phase interactions which affect coarsening behavior. For example, spatial correlations between the two coarsening phases are a strong function of this interaction and can lead to spatial ordering between the two phases. Also, specific ternary systems can produce kinetic instabilities and pattern formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ostwald, W., Z. Phys. Chem. 37, 385 (1901).Google Scholar
2 Lifshitz, I. M. and Slyozov, V. V., eksp. teor. fiz. 35, 2 (1958).Google Scholar
3 Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
4 Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
5 Marqusee, J. A. and Ross, J., J. Chem. Phys. 80, 536 (1984).Google Scholar
6 Brailsford, A. D. and Wynblatt, P., Acta Metall. 27, 489 (1979).Google Scholar
7 Tokuyama, M. and Kawasaki, K., Physica A 123, 386 (1984).Google Scholar
8 Beenakker, C. W. J., Phys. Rev. A 33, 4482 (1986).Google Scholar
9 Voorhees, P.W. and Glicksman, M. E., Acta Metall. 32, 2001 (1987).Google Scholar
10 Voorhees, P.W. and Glicksman, M. E., Acta Metall. 32, 2013 (1987).Google Scholar
11 Rao, J. H., Elder, K. R., Guo, H. and Grant, M., Phys. Rev B 47, 14110 (1993).Google Scholar
12 Tokuyama, M., Kawasaki, K., and Enomoto, Y., Physica A 134, 323 (1986).Google Scholar
13 Marder, M., Phys. Rev. Lett. 55, 2953 (1985).Google Scholar
14 Marder, M., Phys. Rev. A 36, 858 (1987).Google Scholar
14 Marder, M., Phys. Rev. A 36, 858 (1987).Google Scholar
15 Akaiwa, Norio and Voorhees, P.W., Phys. Rev. E 49, 5 (1994).Google Scholar
16 Johnson, W.C., Voorhees, P.W. and Zupon, D. E., Metall. Trans. A 20A, 1175, (1989).Google Scholar
17 Voorhees, P. W. and Johnson, W. C., Phys. Rev. Lett. 61, 2225 (1988).Google Scholar
18 Johnson, W. C., Abinandanan, T. A. and Voorhees, P. W., Acta Metall. Mater. 38, 139 (1990).Google Scholar
19 Kawasaki, K. and Enomoto, Y., Physica A 50, 463 (1988).Google Scholar
20 Abinandanan, T. A. and Johnson, W. C., Acta Metall. Mater. 41, 17 (1993).Google Scholar
21 Abinandanan, T. A. and Johnson, W. C., Acta Metall. Mater. 41, 27 (1993).Google Scholar
22 Thompson, M. E., Su, C. S., and Voorhees, P. W., Acta Metall. 42, 2107 (1994).Google Scholar
23 Su, C. H. and Voorhees, P. W., Acta Mater. 44, 2001 (1996).Google Scholar
24 Morral, J.E. and Purdy, G.R., Scripta Metall. Mater. 30, 905 (1994).Google Scholar
25 Holmes, W.C., Ph.D. Thesis, Washington State University, (1999), p. 54.Google Scholar
26 Hoyt, J. J., Acta Mater. 47, 345 (1998).Google Scholar
27 Liesegang, R. E., Naturw. Wochschr. 11, 353 (1896).Google Scholar