Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:32:48.113Z Has data issue: false hasContentIssue false

Paramagnetic Defects Related to Positive Charges in Silicon Oxynitride Films

Published online by Cambridge University Press:  10 February 2011

Y. Miura
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan, [email protected]
S. Fujieda
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan, [email protected]
E. Hasegawa
Affiliation:
ULSI Device Development Laboratory, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japan
Get access

Abstract

Electron spin resonance (ESR) spectroscopy is used to explore the origin of positive charges in silicon oxynitride thin films formed in a N2O ambient. A new type of paramagnetic center in as-grown oxynitrides appeared as a single peak in the ESR spectrum with a zero crossing g value of 2.0006. This value suggests that the paramragnetic center is a kind of E' center. We investigated the quantitative behavior of the positive charge center and the paramagnetic center through the density changes induced by vacuum ultraviolet irradiation and hydrogen annealing. Based on the similar behavior of both types of center, we argue that the paramagnetic centers can account for a significant part of the positive charges specific to oxynitrides. Since the spin density increased with the oxynitridation temperature, the paramagnetic center is closely related to nitrogen incorporation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hori, T., “Gate Dielectrics and MOS ULSIs” (Springer, 1998).Google Scholar
2.Jamet, P., Tanner, P., Harrison, H. B., and Dimitrijev, S., (Mater. Res. Soc. Proc. 567, Warrendale, PA 1999) pp. 5763.Google Scholar
3.Schmidt, M. A., Terry, F. L., Mathur, B. P., and Senturia, S. D., IEEE Trans. Electron Devices 35, 1627 (1988).Google Scholar
4.Hori, T., IEEE Trans. Electron Devices 37, 2058 (1990).Google Scholar
5.Takagi, M. T. and Toyoshima, Y., IEDM Tech.Dig. (1998) 575.Google Scholar
6.Lenahan, P. M. and Conley, J. F. Jr, J. Vac. Sci. Technol. B16, 2134 (1998).Google Scholar
7.Lenahan, P. M. and Dressendorfer, P. V., J. Appl. Phys. 55, 3495 (1984).Google Scholar
8.Yount, J. T., Lenahan, P. M., and Krick, J. T., J. Appl. Phys. 76, 1754 (1994).Google Scholar
9.Kaplan, D., Lepine, D., Petroff, Y., and Thirry, P., Phys. Rev. Lett. 35, 1376 (1975).Google Scholar
10.Warren, W. L., Lenahan, P. M., and Curry, S. E., Phys. Rev. Lett. 65, 207 (1990).Google Scholar
11.Afanas'ev, V.V., Appl. Phys. Lett. 71, 3844 (1997).Google Scholar
12.Conley, J. F. Jr, Lenahan, P. M., and McArthur, W. F., Appl. Phys. Lett. 73, 2188 (1998).Google Scholar