Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:23:17.905Z Has data issue: false hasContentIssue false

Paramagnetic Defects in Undoped Microcrystalline Silicon Deposited by the Hot-Wire Technique

Published online by Cambridge University Press:  10 February 2011

P. Kanschat
Affiliation:
Hahn-Meitner-Institut, Abteilung Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
K. Lips
Affiliation:
Hahn-Meitner-Institut, Abteilung Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
R. Brüggemann
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
A. Hierzenberger
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
I. Sieber
Affiliation:
Hahn-Meitner-Institut, Abteilung Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Abteilung Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
Get access

Abstract

We report on a study of ESR and conductivity on a series of hot-wire CVD microcrystalline silicon samples prepared with different hydrogen dilution of silane. We observe two different types of dangling bond defects in ESR in different microscopic environments. One type of defect is located at outer surfaces accessible to oxygen and/or chemicals, the other is located at inner boundaries presumably at columnar structures. We correlate changes of the defect density induced by either annealing, exposure to air or wet-chemical treatment with the morphology and electronic properties of the films. We find that annealing at 200 °C induces irreversible changes in donor concentration as monitored by an ESR signal at g = 1.9981±3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Veprek, S., Iqbal, Z., Kühne, R. O., Capezzuto, P., Sarott, F.-A., and Gimizewski, J. K., J. Phys. C: Solid State Phys. 16, 6241 (1983).Google Scholar
2 Torres, P., Meier, J., Flüickiger, R., Kroll, U., Selvan, J. A. Anna, Keppner, H., and Shah, J., Appl. Phys. Lett. 69, 1373 (1996).Google Scholar
3 Brüggemann, R., Hierzenberger, A., Wanka, H. N., and Schubert, M. B., this volume (1998).Google Scholar
4 Hasegawa, S., Narikawa, S., and Kurata, Y., Phil. Mag. B 48, 431 (1983).Google Scholar
5 Finger, F., Malten, C., Hapke, P., Carius, R., Flückiger, R., and Wagner, H., Phil. Mag. Lett. 70, 247 (1994).Google Scholar
6 Will, D., Lerner, C., Fuhs, W., and Lips, K., Mat. Res. Soc. Symp. Proc. 467, 361 (1997).Google Scholar
7 Müller, J., Finger, F., Malten, C., and Wagner, H., J. Non-Cryst. Solids 227–230 (1998), in press.Google Scholar
8 Kondo, M., Nishimiya, T., Saito, K., and Matsuda, A., J. Non-Cryst. Solids 227–230 (1998), in press.Google Scholar
9 Young, C. F. and Poindexter, E. H., J. Appl. Phys. 81, 7468 (1997).Google Scholar
10 Lips, K., Kanschat, P., Will, D., Lerner, C., and Fuhs, W., J. Non-Cryst. Solids 227–230, 1021 (1998).Google Scholar