Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T02:30:11.729Z Has data issue: false hasContentIssue false

Paramagnetic Defect Analysis in UV Lamp Induced Chemical Vapour Deposited a-SiO2 Films

Published online by Cambridge University Press:  22 February 2011

C. Debauche
Affiliation:
Centre National d'Etudes des Telecommunications, BP 107, 92225 Bagneux, France
C. Licoppe
Affiliation:
Centre National d'Etudes des Telecommunications, BP 107, 92225 Bagneux, France
J. Flicstein
Affiliation:
Centre National d'Etudes des Telecommunications, BP 107, 92225 Bagneux, France
R. A. B. Devine
Affiliation:
Centre National d'Etudes des Telecommunications, BP 107, 92225 Bagneux, France
Get access

Abstract

An electron spin resonance study has been carried out on a-SiO2 films deposited from SiH4 and N2O gases using UV lamp induced chemical vapour deposition. Deposition pressures have been varied from 5 torr to 30 torr whilst the substrate temperature was maintained at 240°C. Bridging nitrogen (O3≡Si-N-Si≡O3) and oxygen-vacancy center defects are observed in small quantities (≈ 1016cm−3) whilst over coordinated N defects are observed in concentrations up to 1018 cm−3 dependent upon the deposition pressure. The concentration of these defects can be dramatically reduced either by depositing the a-SiO2 at high pressures (≈ 30 torr) or by post-deposition annealing at ≈ 600°C. Comparison with data on films produced by plasma enhanced chemical vapour deposition demonstrates that the mode of incorporation of nitrogen into the network depends critically upon the chemical species in the deposition reactor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lucovsky, G., in “Microprocess 92”, Jap. J. Appl. Phys. (in press)Google Scholar
2. Tin, C. C., Barnes, P. A. and Neely, W. C., Appl. Phys. Lett. 53, 1940 (1988)Google Scholar
3. Baker, S. D., Milne, W. I. and Robertson, P. A., Appl. Phys. A, 46, 243 (1988)Google Scholar
4. Gabriel, C. T. and McVittie, J. P., Sol. State Technol. 35, 81 (1992)Google Scholar
5. Debauche, C., Licoppe, C., Flicstein, J., Dulac, O. and Devine, R. A. B., Appl. Phys. Lett. 61, 306 (1992)Google Scholar
6. Griscom, D. L., Nucl. Inst. Meth. in Phys. Res. B1, 481 (1984)Google Scholar
7. Debauche, C. et al. (to be published)Google Scholar
8. Nissim, Y., Moison, J. M., Houzay, F., Lebland, F., Licoppe, C. and Bensoussan, M., Appl. Surf. Sci. 46, 175 (1990)Google Scholar
9. Mackey, J. H., Boss, J. W. and Kopp, M., Phys. Chem. Glasses 11, 205 (1970)Google Scholar
10. Friebele, E. J., Griscom, D. L. and Hickmott, T. W., J. Non-Cryst. Solids 71, 351 (1985)Google Scholar
11. Yount, J. T., Kraus, G. T., Lenahan, P. M. and Krick, D. T., J. Appl. Phys. 70, 4969 (1991)Google Scholar
12. Devine, R. A. B., J. Appl. Phys. 70, 3542 (1991)Google Scholar
13. Stathis, J. H., Chapple-Sokol, J., Tiemey, E. and Batey, J., Appl. Phys. Lett. 56, 2111 (1990)Google Scholar
14. Tsai, T. E., Griscom, D. L. and Friebele, E. J., Phys. Rev. B, 38, 2140 (1990)Google Scholar
15. Devine, R. A. B. and Francou, J-M., Phys. Rev. B, 41, 12882 (1990)Google Scholar
16. Brower, K. L., Phys. Rev. B, 26, 6040 (1982)Google Scholar
17. Viscaiïno, S., Ph. D. Thesis, Université Joseph Fourier, Grenoble, France, 1992.Google Scholar
18. Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, R. F., Kerr, J. A., Troe, J. and Watson, R. T., J. Phys. Chem. Ref. Data 2 (1982); 11 (1984); 13 (1987)Google Scholar