Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:24:26.182Z Has data issue: false hasContentIssue false

Parallel Simulations Of Rapid Fracture

Published online by Cambridge University Press:  15 February 2011

Farid F. Abraham*
Affiliation:
IBM Research Division, Almaden Research Center, K18/D2, 650 Harry Road, San Jose, CA 95120–6099
Get access

Abstract

Implementing molecular dynamics on the IBM SP2 parallel computer, we have studied the fracture of two-dimensional notched solids under tension using million atom systems. Brittle materials are modelled through the choice of interatomic potential function and the speed of the failure process, and our interest is to learn about the dynamics of crack propagation in ideal materials. Recent laboratory findings occur in our simulation experiments, one of the most intriguing is the dynamic instability of the crack tip as it approaches a fraction of the sound speed. A detailed comparison between laboratory and computer experiments is presented, and microscopic processes are identified. In particular, an explanation for the limiting velocity of the crack being significantly less than the theoretical limit is provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Freund, L. B., Dynamical Fracture Mechanics (Cambridge Univ. Press, New York, 1990).Google Scholar
2. Herrmann, H. J. and Roux, S., editors, Statistical Models for the Fracture of Disordered Media (North-Holland, Amsterdam, 1990).Google Scholar
3. Fineberg, J., Gross, S. P., Marder, M. and Swinney, H. L., Phys.Rev.Lett., 67, 457 (1991); J. Fineberg, S. P. Gross, M. Marder and H. L. Swinney, Phys.Rev., B 45, 5146 (1992). S. P. Gross, J. Fineberg, M. Marder, W. D. McCormick and H. L. Swinney, Phys.Rev.Lett., 71, 3162 (1993).Google Scholar
4. Langer, J. S., Phys.Rev.Lett., 70, 3592 (1993); J. S. Langer and H. Nakanishi, Phys.Rev.E, 48, 439 (1993).Google Scholar
5. Marder, M. and Liu, X., Phys.Rev.Lett., 71, 2417 (1993).Google Scholar
6. Ashurst, W. T. and Hoover, W. G., Phys.Rev., B 14, 1465 (1976).Google Scholar
7. Cheung, K. S. and Yip, S., Phys.Rev.Lett., 65, 1804 (1990).Google Scholar
8. Abraham, F. F., Brodbeck, D., Rafey, R. and Rudge, W. E., Phys.Rev.Lett.,, (1994).Google Scholar
9. Abraham, F. F., Advances In Physics, 35, 1 (1986).Google Scholar
10. Holian, B. L., Voter, A. F., Wagner, N. J., Ravelo, R. J., Chen, S. P., Win, . Hoover, G., Hoover, C. G., Hammerberg, J. E. and Dontjie, T. D., Physical Review A, 43, 2655 (1991).Google Scholar
11. Plimpton, S., J.Comp.Phys., 117, 1 (1995).Google Scholar
12. Miloy, K. J., Hansen, A., Hinrichsen, E. L. and Roux, S., Phys.Rev.Lett., 68, 213 (1992).Google Scholar
13. Xu, X.-P. and Needleman, A., J.Mech.Phys.Solids, 42, 1397 (1994).Google Scholar
14. Abraham, F. F., unpublished.Google Scholar